skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Sound velocity of drilling mud saturated with reservoir gas

Abstract

Knowledge of the in-situ sound velocity of drilling mud can be used in mud-pulse acoustic telemetry for evaluating the presence and amount of gas invasion in the drilling mud. The authors propose a model for calculating the in-situ density and sound velocity of water-based and oil-based drilling muds containing formation gas. Drilling muds are modeled as a suspension of clay particles and high-gravity solids in water or oil, with the acoustic properties of these fluids depending on pressure and temperature. Since mud at different depths experiences different pressures and temperatures, downhold mud weights can be significantly different from those measured at the surface. Taking this fact into consideration, the authors assume constant clay composition and obtained the fraction of high-gravity solids to balance the formation pressure corresponding to a given drilling plan. This gives the in-situ density of the drilling mud, which together with the bulk moduli of the single constituents allow one to compute the second velocity using Reuss's model. In the case of oil-based muds, they take into account the gas solubility in oil. When gas goes into solution, the mud is compassed of solid particles, live oil and, eventually, free gas. A phenomenological model based on amore » continuous spectrum of relaxation mechanisms is used to describe attenuation due to mud viscosity. The calculations for water-based and oil-based muds showed that the sound velocity is strongly dependent on gas saturation, fluid composition, and drilling depth.« less

Authors:
;
Publication Date:
Research Org.:
Osservatorio Geofisico Sperimentale, Trieste (IT)
OSTI Identifier:
20062633
Resource Type:
Journal Article
Journal Name:
Geophysics
Additional Journal Information:
Journal Volume: 65; Journal Issue: 2; Other Information: PBD: Mar-Apr 2000; Journal ID: ISSN 0016-8033
Country of Publication:
United States
Language:
English
Subject:
03 NATURAL GAS; 02 PETROLEUM; NATURAL GAS WELLS; OIL WELLS; DRILLING FLUIDS; GAS SATURATION; SONIC LOGGING; WAVE PROPAGATION; DENSITY; VISCOSITY

Citation Formats

Carcione, J M, and Poletto, F. Sound velocity of drilling mud saturated with reservoir gas. United States: N. p., 2000. Web. doi:10.1190/1.1444761.
Carcione, J M, & Poletto, F. Sound velocity of drilling mud saturated with reservoir gas. United States. https://doi.org/10.1190/1.1444761
Carcione, J M, and Poletto, F. 2000. "Sound velocity of drilling mud saturated with reservoir gas". United States. https://doi.org/10.1190/1.1444761.
@article{osti_20062633,
title = {Sound velocity of drilling mud saturated with reservoir gas},
author = {Carcione, J M and Poletto, F},
abstractNote = {Knowledge of the in-situ sound velocity of drilling mud can be used in mud-pulse acoustic telemetry for evaluating the presence and amount of gas invasion in the drilling mud. The authors propose a model for calculating the in-situ density and sound velocity of water-based and oil-based drilling muds containing formation gas. Drilling muds are modeled as a suspension of clay particles and high-gravity solids in water or oil, with the acoustic properties of these fluids depending on pressure and temperature. Since mud at different depths experiences different pressures and temperatures, downhold mud weights can be significantly different from those measured at the surface. Taking this fact into consideration, the authors assume constant clay composition and obtained the fraction of high-gravity solids to balance the formation pressure corresponding to a given drilling plan. This gives the in-situ density of the drilling mud, which together with the bulk moduli of the single constituents allow one to compute the second velocity using Reuss's model. In the case of oil-based muds, they take into account the gas solubility in oil. When gas goes into solution, the mud is compassed of solid particles, live oil and, eventually, free gas. A phenomenological model based on a continuous spectrum of relaxation mechanisms is used to describe attenuation due to mud viscosity. The calculations for water-based and oil-based muds showed that the sound velocity is strongly dependent on gas saturation, fluid composition, and drilling depth.},
doi = {10.1190/1.1444761},
url = {https://www.osti.gov/biblio/20062633}, journal = {Geophysics},
issn = {0016-8033},
number = 2,
volume = 65,
place = {United States},
year = {Sat Apr 01 00:00:00 EST 2000},
month = {Sat Apr 01 00:00:00 EST 2000}
}