skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Characteristics of boron doped mesophase pitch-based carbon fibers as anode materials for lithium secondary cells

Conference ·
OSTI ID:20019189

Mesophase pitch-based Carbon Fibers(MCF) have been investigated as anode materials for lithium secondary cells by examining their physical and electrochemical properties. Discharge capacity and initial charge-discharge efficiency of the materials were studied in relation to the heat treatment temperatures of MCF. MCF heat treated at about 3,000 C gave high discharge capacity over 310mAh/g, good efficiency (93%) and superior current capability of 600mA/g (6mA/cm2). On the other hand, to improve the battery capacity, Boron was doped to the fiber about several {degree} by adding B{sub 4}C to the pre-carbonized milled fibers and then heat-treated up to 3,000 C in Ar. Then heat treated at 2,500 C under vacuum condition to remove remained B{sub 4}C. The structure of Boron-doped fibers was characterized and compared with that of non-doped standard fibers, and also Li ion battery performances are evaluated. The Boron-doped MCF indicated improvement in graphitization and increased discharge capacity as high as 360mAh/g. The voltammograms of both fibers are different from each other. The cell mechanism is discussed based on the unique structure of Boron-doping to the MCF is very effective for the battery performance.

Research Organization:
Petoca, Ltd., Ibaraki (JP)
OSTI ID:
20019189
Resource Relation:
Conference: 1997 Materials Research Society Fall Meeting, Boston, MA (US), 12/01/1997--12/05/1997; Other Information: PBD: 1998; Related Information: In: Materials for electrochemical energy storage and conversion II -- Batteries, capacitors and fuel cells. Materials Research Society symposium proceedings, Volume 496, by Ginley, D.S.; Doughty, D.H.; Scrosati, B.; Takamura, T.; Zhang, Z.J. [eds.], 702 pages.
Country of Publication:
United States
Language:
English