skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Thermodynamics of electron attachment to pyrimidine and styrene in supercritical ethane

Journal Article · · Journal of Physical Chemistry B: Materials, Surfaces, Interfaces, amp Biophysical
DOI:https://doi.org/10.1021/jp990717c· OSTI ID:20003231

The reaction of excess electrons with pyrimidine and styrene was studied in supercritical scheme. The equilibrium constant for attachment was large when the solute was pyrimidine and small for styrene, although their electron affinities are comparable. At pressures above 100 bar, the rate constant for electron attachment to pyrimidine ({kappa}{sub a}) was time resolved using the short pulse of the laser-electron accelerator facility (LEAF). The rate constant, {kappa}{sub a}, is large and nearly independent of pressure and temperature; thus, the volume of activation is close to zero. At lower pressures, the equilibrium constants for this reaction were derived from the changes in the mobility of excess electrons. The free energy is a function of the polarization energy, which was evaluated with a compressible continuum model. The small equilibrium constant in the case of styrene is attributed to a smaller polarization energy. Values of {Delta}V{sub r}, obtained from changes of {Delta}G{sub r} with pressure, range from {minus}9.0 to {minus}0.4 L/mol. The observed volume changes are compared to electrostriction volumes calculated by the model. Electron attachment occurs with a large decrease in entropy associated with clustering of ethane molecules around the ion formed. Observed values of {Delta}S{sub r} are comparable to expected values calculated from {Delta}S{sub r} = ({alpha}/{chi}T){Delta}V{sub r}.

Research Organization:
Brookhaven National Lab., Upton, NY (US)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC02-98CH10886
OSTI ID:
20003231
Journal Information:
Journal of Physical Chemistry B: Materials, Surfaces, Interfaces, amp Biophysical, Vol. 103, Issue 43; Other Information: PBD: 28 Oct 1999
Country of Publication:
United States
Language:
English