skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Tensile strength of thermomechanically processed Cu-9Ni-6Sn alloys

Journal Article · · Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science

The tensile properties of Cu-9Ni-6Sn alloys with different swaging amounts of 64, 77, and 95 pct, either solutionized and aged (S/A), were examined as a function of aging time. It was found that the aging response of Cu-9Ni-6Sn alloys varied greatly depending on the prior solution heat treatment before aging and/or different swaging amounts. The swaged S/A Cu-9Ni-6Sn alloys showed a multistage increase in tensile strength with respect to aging time, probably due to the sequential occurrence of spinodal decomposition, formation of metastable {gamma}{center{underscore}dot} precipitates, and recrystallization. The effect of different swaging amounts, ranging from 64 to 95 pct, was minimal on the aging response of S/A specimens. The prior cold working, however, appeared to favor the spinodal strengthening, comparing unswaged and swaged S/A Cu-9Ni-6Sn alloys. In 95 pct swaged D/A Cu-9Ni-6Sn alloys, the level of hardening was much less sensitive to aging time. A complex interaction between the reduction in dislocation density, the formation of equilibrium precipitates, and the reduction of Sn content in the Sn-rich segregates during an aging process is believed to be responsible for such a lean sensitivity. The increases in tensile strength of 64 and 77 pct swaged D/A Cu-9Ni-6Sn alloys were found to be much steeper than that in the 95 pct counterparts in the early and intermediate stages of aging, which is believed to be related to the relative contribution from work hardening and precipitation hardening to the strength level of D/A specimens.

Research Organization:
Gyeongsang National Univ., Chinju (KR)
OSTI ID:
20002009
Journal Information:
Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science, Vol. 30, Issue 10; Other Information: PBD: Oct 1999
Country of Publication:
United States
Language:
English