skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: An Evaluation of Conditioning Data for Solute Transport Prediction

Journal Article · · Ground Water, 41(2):128-141

The large and diverse body of subsurface characterization data generated at a field research site near Oyster, Virginia provides a unique opportunity to test the impact of conditioning data of various types on predictions of flow and transport. Bromide breakthrough curves (BTCs) were measured during a forced-gradient local-scale injection experiment conducted in 1999. Observed BTCs are available at 140 sampling points in a three dimensional array within the transport domain. A detailed three-dimensional numerical model is used to simulate breakthrough curves at the same locations as the observed BTCs under varying assumptions regarding the character of hydraulic conductivity spatial distributions, and variable amounts and types of conditioning data. We present comparative results of six different cases ranging from simple (deterministic homogeneous models) to complex (stochastic indicator simulation conditioned to cross-borehole geophysical observations). Quantitative measures of model goodness-of-fit are presented. The results show that conditioning to a large number of small-scale measurements does not significantly improve model predictions, and may lead to biased or overly confident predictions. However, conditioning to geophysical interpretations with larger spatial support significantly improves the accuracy and precision of model predictions. In all cases, the effects of model error appear to be significant in relation to parameter uncertainty.

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
15010086
Report Number(s):
PNNL-SA-35841; KP1301010
Journal Information:
Ground Water, 41(2):128-141, Journal Name: Ground Water, 41(2):128-141
Country of Publication:
United States
Language:
English