skip to main content

Title: Alternative first-principles calculation of entropy for liquids

Here, w present an alternative method for interpreting the velocity autocorrelation function (VACF) of a fluid with application to extracting the entropy in a manner similar to the methods developed by Lin et al. [J. Chem. Phys. 119, 11792 (2003)] and improved upon by Desjarlais [Phys. Rev. E 88, 062145 (2013)]. The liquid VACF is decomposed into two components, one gas and one solid, and each contribution's entropic portion is calculated. But, we fit both the gas and solid portions of the VACF in the time domain. This approach is applied to a single-component liquid (a two-phase model of liquid Al at the melt line) and two different two-component systems: a superionic-to-superionic (bcc to fcc) phase transition in H 2 O at high temperatures and pressures and a metastable liquid state of MgO. Finally, for all three examples, comparisons to existing results in the literature demonstrate the validity of our alternative.
ORCiD logo [1] ; ORCiD logo [1] ;  [1] ; ORCiD logo [1]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
OSTI Identifier:
Report Number(s):
Journal ID: ISSN 2470-0045; PLEEE8
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Physical Review E
Additional Journal Information:
Journal Volume: 93; Journal Issue: 4; Journal ID: ISSN 2470-0045
American Physical Society (APS)
Research Org:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org:
Country of Publication:
United States
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; Entropy; Molecular Dynamics; First Principles Calculation