skip to main content

This content will become publicly available on July 18, 2017

Title: Plasma-initiated rehydrogenation of amorphous silicon to increase the temperature processing window of silicon heterojunction solar cells

The dehydrogenation of intrinsic hydrogenated amorphous silicon (a-Si:H) at temperatures above approximately 300°C degrades its ability to passivate silicon wafer surfaces. This limits the temperature of post-passivation processing steps during the fabrication of advanced silicon heterojunction or silicon-based tandem solar cells. We demonstrate that a hydrogen plasma can rehydrogenate intrinsic a-Si:H passivation layers that have been dehydrogenated by annealing. The hydrogen plasma treatment fully restores the effective carrier lifetime to several milliseconds in textured crystalline siliconwafers coated with 8-nm-thick intrinsic a-Si:H layers after annealing at temperatures of up to 450°C. Plasma-initiated rehydrogenation also translates to complete solar cells: A silicon heterojunction solar cell subjected to annealing at 450°C (following intrinsic a-Si:H deposition) had an open-circuit voltage of less than 600 mV, but an identical cell that received hydrogen plasma treatment reached a voltage of over 710 mV and an efficiency of over 19%.
Authors:
; ORCiD logo ;
Publication Date:
OSTI Identifier:
1354913
Grant/Contract Number:
EE0006335
Type:
Accepted Manuscript
Journal Name:
Applied Physics Letters
Additional Journal Information:
Journal Volume: 109; Journal Issue: 3; Journal ID: ISSN 0003-6951
Publisher:
American Institute of Physics (AIP)
Research Org:
Arizona State Univ., Tempe, AZ (United States)
Sponsoring Org:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY; surface passivation; passivation; plasma temperature; solar cells; silicon