skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A magnesium–sodium hybrid battery with high operating voltage

Abstract

Here, we report a high performance magnesium-sodium hybrid battery utilizing a magnesium-sodium dual-salt electrolyte, a magnesium anode, and a Berlin green cathode. The cell delivers an average discharge voltage of 2.2 V and a reversible capacity of 143 mA h g–1. We also demonstrate the cell with an energy density of 135 W h kg–1 and a high power density of up to 1.67 kW kg–1.

Authors:
 [1];  [1];  [1];  [2];  [3];  [3];  [4];  [1]
  1. Univ. of Houston, Houston, TX (United States)
  2. Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
  3. Argonne National Lab. (ANL), Argonne, IL (United States)
  4. Sharp Lab. of America, Camas, WA (United States)
Publication Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States)
Sponsoring Org.:
US Department of the Navy, Office of Naval Research (ONR); National Science Foundation (NSF); USDOE Office of Science (SC)
OSTI Identifier:
1346732
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
ChemComm
Additional Journal Information:
Journal Volume: 52; Journal Issue: 53; Journal ID: ISSN 1359-7345
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE

Citation Formats

Dong, Hui, Li, Yifei, Liang, Yanliang, Li, Guosheng, Sun, Cheng -Jun, Ren, Yang, Lu, Yuhao, and Yao, Yan. A magnesium–sodium hybrid battery with high operating voltage. United States: N. p., 2016. Web. doi:10.1039/c6cc03081e.
Dong, Hui, Li, Yifei, Liang, Yanliang, Li, Guosheng, Sun, Cheng -Jun, Ren, Yang, Lu, Yuhao, & Yao, Yan. A magnesium–sodium hybrid battery with high operating voltage. United States. https://doi.org/10.1039/c6cc03081e
Dong, Hui, Li, Yifei, Liang, Yanliang, Li, Guosheng, Sun, Cheng -Jun, Ren, Yang, Lu, Yuhao, and Yao, Yan. 2016. "A magnesium–sodium hybrid battery with high operating voltage". United States. https://doi.org/10.1039/c6cc03081e. https://www.osti.gov/servlets/purl/1346732.
@article{osti_1346732,
title = {A magnesium–sodium hybrid battery with high operating voltage},
author = {Dong, Hui and Li, Yifei and Liang, Yanliang and Li, Guosheng and Sun, Cheng -Jun and Ren, Yang and Lu, Yuhao and Yao, Yan},
abstractNote = {Here, we report a high performance magnesium-sodium hybrid battery utilizing a magnesium-sodium dual-salt electrolyte, a magnesium anode, and a Berlin green cathode. The cell delivers an average discharge voltage of 2.2 V and a reversible capacity of 143 mA h g–1. We also demonstrate the cell with an energy density of 135 W h kg–1 and a high power density of up to 1.67 kW kg–1.},
doi = {10.1039/c6cc03081e},
url = {https://www.osti.gov/biblio/1346732}, journal = {ChemComm},
issn = {1359-7345},
number = 53,
volume = 52,
place = {United States},
year = {Fri Jun 10 00:00:00 EDT 2016},
month = {Fri Jun 10 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 43 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Copper hexacyanoferrate battery electrodes with long cycle life and high power
journal, November 2011


Prussian blue: a new framework of electrode materials for sodium batteries
journal, January 2012


Single-crystal FeFe(CN)6 nanoparticles: a high capacity and high rate cathode for Na-ion batteries
journal, January 2013


Rhombohedral Prussian White as Cathode for Rechargeable Sodium-Ion Batteries
journal, February 2015


Microscopic properties of lithium, sodium, and magnesium battery anode materials related to possible dendrite growth
journal, November 2014


New Mechanistic Insights on Na-Ion Storage in Nongraphitizable Carbon
journal, August 2015


The Mechanisms of Lithium and Sodium Insertion in Carbon Materials
journal, January 2001


Prototype systems for rechargeable magnesium batteries
journal, October 2000


Interlayer-Expanded Molybdenum Disulfide Nanocomposites for Electrochemical Magnesium Storage
journal, February 2015


Improved Electrolyte Solutions for Rechargeable Magnesium Batteries
journal, January 2006


A concept of dual-salt polyvalent-metal storage battery
journal, January 2014


High performance batteries based on hybrid magnesium and lithium chemistry
journal, January 2014


Efficient and Inexpensive Sodium–Magnesium Hybrid Battery
journal, October 2015


Elucidating the structure of the magnesium aluminum chloride complex electrolyte for magnesium-ion batteries
journal, January 2015


Electrochemically stable cathode current collectors for rechargeable magnesium batteries
journal, January 2014


A high performance hybrid battery based on aluminum anode and LiFePO 4 cathode
journal, January 2016


An Efficient Halogen-Free Electrolyte for Use in Rechargeable Magnesium Batteries
journal, May 2015


A Superior Low-Cost Cathode for a Na-Ion Battery
journal, January 2013


High energy density hybrid Mg 2+ /Li + battery with superior ultra-low temperature performance
journal, January 2016


High Areal Capacity Hybrid Magnesium–Lithium-Ion Battery with 99.9% Coulombic Efficiency for Large-Scale Energy Storage
journal, March 2015


Dual-Salt Mg-Based Batteries with Conversion Cathodes
journal, November 2015


Works referencing / citing this record:

KTi 2 (PO 4 ) 3 with Large Ion Diffusion Channel for High-Efficiency Sodium Storage
journal, May 2017


Mg Cathode Materials and Electrolytes for Rechargeable Mg Batteries: A Review
journal, January 2019


Four decades of electrochemical investigation of Prussian blue
journal, November 2019


A critical review of cathodes for rechargeable Mg batteries
journal, January 2018


Exploring the Synergy of LiBH 4 /NaBH 4 Additives with Mg(BH 4 ) 2 Electrolyte Using Density Functional Theory
journal, January 2018


Communication—Mg(TFSI) 2 -Based Hybrid Magnesium-Sodium Electrolyte: Case Study with NaTi 2 (PO 4 ) 3 //Mg Cell
journal, January 2018


Rechargeable Mg–Li hybrid batteries: status and challenges
journal, September 2016


Magnesium-Sodium Hybrid Battery With High Voltage, Capacity and Cyclability
journal, December 2018