skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A model organism for new gene discovery by cDNA sequencing

Abstract

One method of new gene discovery is single pass sequencing of cDNAs to identify expressed sequence tags (ESTs). Model organisms can have biological properties which makes their use advantageous over studies with humans. One such model organism with advantages for cDNA sequencing is the African trypanosome T. brucei rhodesiense. This organism has the same 40 nucleotide sequence (splice leader sequence) on the 5{prime} end of all mRNAs. We have constructed a 5{prime} cDNA library by priming off the splice leader sequence and have begun sequencing this cDNA library. To date, over nearly 500 such cDNA expressed sequence tags (ESTs) have been examined. Forty-three percent of the sequences sampled from the trypanosome cDNA library have significant similarities to sequences already in the protein and translated nucleic acid databases. Among these are cDNA sequences which encode previously reported T. brucej proteins such as the VSG, tubulin, calflagin, etc., and proteins previously identified in other trypanosomatids. Other cDNAs display significant similarities to genes in unrelated organisms encoding several ribosomal proteins, metabolic enzymes, GTP binding proteins, transcription factors, cyclophillin, nucleosomal histones, histone H1, and a macrophage stress protein, among others. The 57% of the cDNAs that are not similar to sequences currently in themore » databases likely encode both trypanosome-specific proteins and housekeeping proteins shared with other eukaryotes. These cDNA ESTs provide new avenues of research for exploring both the biochemistry and the genome organization of this parasite, as well as a resource for identifying the 5{prime} sequence of novel genes likely to have homology to genes expressed in other organisms.« less

Authors:
; ;  [1]
  1. Univ. of Iowa, Iowa City, IA (United States); and others
Publication Date:
OSTI Identifier:
134404
Report Number(s):
CONF-941009-
Journal ID: AJHGAG; ISSN 0002-9297; TRN: 95:005313-1138
Resource Type:
Journal Article
Journal Name:
American Journal of Human Genetics
Additional Journal Information:
Journal Volume: 55; Journal Issue: Suppl.3; Conference: 44. annual meeting of the American Society of Human Genetics, Montreal (Canada), 18-22 Oct 1994; Other Information: PBD: Sep 1994
Country of Publication:
United States
Language:
English
Subject:
55 BIOLOGY AND MEDICINE, BASIC STUDIES; GENES; DNA SEQUENCING; DATA BASE MANAGEMENT; GENETIC MAPPING; NUCLEOTIDES; PROTEINS; TRYPANOSOMES; BIOCHEMISTRY; MESSENGER-RNA; TRANSCRIPTION FACTORS

Citation Formats

El-Saved, N M, Donelson, J E, and Alarcon, C M. A model organism for new gene discovery by cDNA sequencing. United States: N. p., 1994. Web.
El-Saved, N M, Donelson, J E, & Alarcon, C M. A model organism for new gene discovery by cDNA sequencing. United States.
El-Saved, N M, Donelson, J E, and Alarcon, C M. 1994. "A model organism for new gene discovery by cDNA sequencing". United States.
@article{osti_134404,
title = {A model organism for new gene discovery by cDNA sequencing},
author = {El-Saved, N M and Donelson, J E and Alarcon, C M},
abstractNote = {One method of new gene discovery is single pass sequencing of cDNAs to identify expressed sequence tags (ESTs). Model organisms can have biological properties which makes their use advantageous over studies with humans. One such model organism with advantages for cDNA sequencing is the African trypanosome T. brucei rhodesiense. This organism has the same 40 nucleotide sequence (splice leader sequence) on the 5{prime} end of all mRNAs. We have constructed a 5{prime} cDNA library by priming off the splice leader sequence and have begun sequencing this cDNA library. To date, over nearly 500 such cDNA expressed sequence tags (ESTs) have been examined. Forty-three percent of the sequences sampled from the trypanosome cDNA library have significant similarities to sequences already in the protein and translated nucleic acid databases. Among these are cDNA sequences which encode previously reported T. brucej proteins such as the VSG, tubulin, calflagin, etc., and proteins previously identified in other trypanosomatids. Other cDNAs display significant similarities to genes in unrelated organisms encoding several ribosomal proteins, metabolic enzymes, GTP binding proteins, transcription factors, cyclophillin, nucleosomal histones, histone H1, and a macrophage stress protein, among others. The 57% of the cDNAs that are not similar to sequences currently in the databases likely encode both trypanosome-specific proteins and housekeeping proteins shared with other eukaryotes. These cDNA ESTs provide new avenues of research for exploring both the biochemistry and the genome organization of this parasite, as well as a resource for identifying the 5{prime} sequence of novel genes likely to have homology to genes expressed in other organisms.},
doi = {},
url = {https://www.osti.gov/biblio/134404}, journal = {American Journal of Human Genetics},
number = Suppl.3,
volume = 55,
place = {United States},
year = {Thu Sep 01 00:00:00 EDT 1994},
month = {Thu Sep 01 00:00:00 EDT 1994}
}