skip to main content

This content will become publicly available on July 5, 2017

Title: Understanding the Critical Parameters of the PAMS Mandrel Fabrication Process

As a part of an effort to continually better the roundness and roughness of ablator capsules, we looked at improving the same for the poly(alphamethylstyrene) or PAMS mandrels used to make the plastic capsules. The importance of this work is based on the fact that the surface properties of the mandrels set the lower limit for the ultimate attributes of the ablator capsule. These mandrels are made using an elegant double-emulsion process that uses the isotropic forces brought about by hydrostatic pressure and interfacial tension to seek sphericity. This paper describes the reasoning that led to investigating the so-called curing process where a solid PAMS shell is generated from a solution phase for achieving this goal. Using modeling to account for the mass transfer of the fluorobenzene solvent phase, we demonstrate that it is the control of the conditions through the percolation point of the system that leads to better mandrels. These concepts were implemented into the fabrication process to demonstrate significant improvements of the roundness of the mandrels.
Authors:
 [1] ;  [1] ;  [1] ;  [1]
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Publication Date:
OSTI Identifier:
1343051
Report Number(s):
LLNL-JRNL-677215
Journal ID: ISSN 1536-1055; TRN: US1701802
Grant/Contract Number:
AC52-07NA27344
Type:
Accepted Manuscript
Journal Name:
Fusion Science and Technology
Additional Journal Information:
Journal Volume: 70; Journal Issue: 2; Journal ID: ISSN 1536-1055
Publisher:
American Nuclear Society
Research Org:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org:
USDOE
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 42 ENGINEERING