skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Tuning the Outward to Inward Swelling in Lithiated Silicon Nanotubes via Surface Oxide Coating

Journal Article · · Nano Letters

The electrochemically-induced mechanical degradation hinders the application of Si anodes in advanced lithium-ion batteries. Hollow structures and surface coatings have been often used to mitigate the degradation of Si-based anodes. However, the structural change and degradation mechanism during lithiation/delithiation of hollow Si structures with coatings remain unclear. Here, we combine in situ TEM experiment and chemomechanical modeling to study the electrochemically induced swelling of amorphous-Si (a-Si) nanotubes with different thicknesses of surface SiOx layers. Surprisingly, we find that no inward expansion occurs at the inner surface during lithiation of a-Si nanotubes with native oxides. In contrast, inward expansion can be induced by increasing the thickness of SiOx on the outer surface. Moreover, both the sandwich lithiation mechanism and two-stage lithiation process in a-Si nanotubes remain unchanged with the increasing thickness of surface coatings. Our chemomechanical modeling reveals the mechanical confinement effects in lithiated a-Si nanotubes with and without SiOx coatings. This work not only provides insights into the degradation of nanotube anodes with surface coatings, but also sheds light onto the optimal design of hollow anodes for high-performance lithium-ion batteries.

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL)
Sponsoring Organization:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V)
DOE Contract Number:
AC05-76RL01830
OSTI ID:
1340871
Report Number(s):
PNNL-SA-120527; 48379; KP1704020
Journal Information:
Nano Letters, Vol. 16, Issue 9; ISSN 1530-6984
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English

Similar Records

Inward Lithium-Ion Breathing of Hierarchically Porous Silicon Anodes
Journal Article · Thu Nov 05 00:00:00 EST 2015 · Nature Communications · OSTI ID:1340871

Minimized Volume Expansion in Hierarchical Porous Silicon upon Lithiation
Journal Article · Wed Feb 27 00:00:00 EST 2019 · ACS Applied Materials and Interfaces · OSTI ID:1340871

Mechanical mismatch-driven rippling in carbon-coated silicon sheets for stress-resilient battery anodes
Journal Article · Thu Jul 26 00:00:00 EDT 2018 · Nature Communications · OSTI ID:1340871