skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Electron Transfer Governed Crystal Transformation of Tungsten Trioxide upon Li Ions Intercalation

Journal Article · · ACS Applied Materials and Interfaces

Reversible insertion/extraction of ions into a host lattice constitutes the fundamental operating principle of rechargeable battery and electrochromic materials. It is far more commonly observed that insertion of ions into a host lattice can lead to structural evolution of the host lattice, and for the most cases such a lattice evolution is subtle. However, it has never been clear as what kind of factors to control such a lattice structural evolution. Based on tungsten trioxide (WO3) model crystal, we use in situ transmission electron microscopy (TEM) and first principles calculation to explore the nature of Li ions intercalation induced crystal symmetry evolution of WO3. We discovered that Li insertion into the octahedral cavity of WO3 lattice will lead to a low to high symmetry transition, featuring a sequential monoclinic→tetragonal→cubic phase transition. The first principle calculation reveals that the phase transition is essentially governed by the electron transfer from Li to the WO6 octahedrons, which effectively leads to the weakening the W-O bond and modifying system band structure, resulting in an insulator to metal transition. The observation of the electronic effect on crystal symmetry and conductivity is significant, providing deep insights on the intercalation reactions in secondary rechargeable ion batteries and the approach for tailoring the functionalities of material based on insertion of ions in the lattice.

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL)
Sponsoring Organization:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
DOE Contract Number:
AC05-76RL01830
OSTI ID:
1340869
Report Number(s):
PNNL-SA-120073; 48379; KP1704020
Journal Information:
ACS Applied Materials and Interfaces, Vol. 8, Issue 37; ISSN 1944-8244
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English