skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: GLM: A relational database system for linkage mapping on PC compatibles

Abstract

Collection and management of family data, phenotypes, genotypes and the creation of a catalog of available and potential genetic markers can easily become overwhelming. The General Linkage Mapping (GLM) database and analysis system is designed to be an easy to use program with an intuitive interface for managing the data required for input and the resulting data output from two point linkage mapping analysis programs such as LINKAGE, MLINK, and ILINK. A comprehensive context-sensitive help system in integrated into the program along with data transfer and data backup capabilities. The relational databases managed by the GLM program are structured such that each project/disease can have multiple families, and marker, genotype, and result databases. Family data includes father/mother relationships; twin relationships, sex, age, date of birth/death, availability for typing, laboratory ID, and up to 50 phenotypes or diagnostic criteria, with corresponding liability classes and ages of onset. The liability classes can be entered manually or can be calculated from the individual`s age or age of disease onset. Phenotype data can either be quantitative, binary or of the affection status type. Genotype data, cross-referenced by laboratory ID, can be entered using any unique identification for each allele (e.g. size of dinucleotide repeats).more » Marker information includes marker name, chromosome, sex-ratio, allele identifications and frequencies. The GLM program creates all of the ASCII output files required by LINKAGE, MLINK and ILINK for input. Multiple or single families can be run. Upon execution of these programs, the GLM program imports the results of the analysis and keeps a database family, marker, date of analysis, and LOD scores. Future versions will include two-point exclusion mapping capabilities and output files for multipoint analysis.« less

Authors:
;  [1]
  1. Columbia Univ., New York, NY (United States)
Publication Date:
OSTI Identifier:
133912
Report Number(s):
CONF-941009-
Journal ID: AJHGAG; ISSN 0002-9297; TRN: 95:005313-0646
Resource Type:
Journal Article
Journal Name:
American Journal of Human Genetics
Additional Journal Information:
Journal Volume: 55; Journal Issue: Suppl.3; Conference: 44. annual meeting of the American Society of Human Genetics, Montreal (Canada), 18-22 Oct 1994; Other Information: PBD: Sep 1994
Country of Publication:
United States
Language:
English
Subject:
55 BIOLOGY AND MEDICINE, BASIC STUDIES; 99 MATHEMATICS, COMPUTERS, INFORMATION SCIENCE, MANAGEMENT, LAW, MISCELLANEOUS; GENETIC MAPPING; DATA BASE MANAGEMENT; DATA COMPILATION; INFORMATION SYSTEMS; HUMAN POPULATIONS; GENETICS; PHENOTYPE; GENOTYPE; HEREDITARY DISEASES; HUMAN CHROMOSOMES; BIOLOGICAL MARKERS; COMPUTER CODES; L CODES; NUCLEOTIDES

Citation Formats

Lucek, P, and Ott, J. GLM: A relational database system for linkage mapping on PC compatibles. United States: N. p., 1994. Web.
Lucek, P, & Ott, J. GLM: A relational database system for linkage mapping on PC compatibles. United States.
Lucek, P, and Ott, J. 1994. "GLM: A relational database system for linkage mapping on PC compatibles". United States.
@article{osti_133912,
title = {GLM: A relational database system for linkage mapping on PC compatibles},
author = {Lucek, P and Ott, J},
abstractNote = {Collection and management of family data, phenotypes, genotypes and the creation of a catalog of available and potential genetic markers can easily become overwhelming. The General Linkage Mapping (GLM) database and analysis system is designed to be an easy to use program with an intuitive interface for managing the data required for input and the resulting data output from two point linkage mapping analysis programs such as LINKAGE, MLINK, and ILINK. A comprehensive context-sensitive help system in integrated into the program along with data transfer and data backup capabilities. The relational databases managed by the GLM program are structured such that each project/disease can have multiple families, and marker, genotype, and result databases. Family data includes father/mother relationships; twin relationships, sex, age, date of birth/death, availability for typing, laboratory ID, and up to 50 phenotypes or diagnostic criteria, with corresponding liability classes and ages of onset. The liability classes can be entered manually or can be calculated from the individual`s age or age of disease onset. Phenotype data can either be quantitative, binary or of the affection status type. Genotype data, cross-referenced by laboratory ID, can be entered using any unique identification for each allele (e.g. size of dinucleotide repeats). Marker information includes marker name, chromosome, sex-ratio, allele identifications and frequencies. The GLM program creates all of the ASCII output files required by LINKAGE, MLINK and ILINK for input. Multiple or single families can be run. Upon execution of these programs, the GLM program imports the results of the analysis and keeps a database family, marker, date of analysis, and LOD scores. Future versions will include two-point exclusion mapping capabilities and output files for multipoint analysis.},
doi = {},
url = {https://www.osti.gov/biblio/133912}, journal = {American Journal of Human Genetics},
number = Suppl.3,
volume = 55,
place = {United States},
year = {Thu Sep 01 00:00:00 EDT 1994},
month = {Thu Sep 01 00:00:00 EDT 1994}
}