skip to main content

This content will become publicly available on July 5, 2017

Title: Unusual Kondo-hole effect and crystal-field frustration in Nd-doped CeRhIn5

In this research, we investigate single crystals of Ce1₋xNdxRhIn5 by means of x-ray-diffraction, microprobe, magnetic susceptibility, heat capacity, and electrical resistivity measurements. Our data reveal that the antiferromagnetic transition of CeRhIn5, at T$$Ce\atop{N}$$=3.8 K, is linearly suppressed with xNd. We associate this effect with the presence of a “Kondo hole” created by Nd substitution. The extrapolation of T$$Ce\atop{N}$$ to zero temperature, however, occurs at xc~0.3, which is below the two-dimensional percolation limit found in Ce1₋xLaxRhIn5. This result strongly suggests the presence of a crystal-field induced magnetic frustration. Near xNd~0.2, the Ising antiferromagnetic order from Nd3+ ions is stabilized and T$$Nd\atop{N}$$ increases up to 11 K in NdRhIn5. Finally, our results shed light on the effects of magnetic doping in heavy-fermion antiferromagnets and stimulate the study of such systems under applied pressure.
Authors:
 [1] ;  [2] ;  [3] ;  [4] ;  [2]
  1. Univ. of California, Irvine, CA (United States); Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  2. Univ. of California, Irvine, CA (United States)
  3. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  4. Instituto de Fisica Gleb Wataghin, UNICAMP, Campinas-SP (Brazil)
Publication Date:
OSTI Identifier:
1337102
Report Number(s):
LA-UR-16-22124
Journal ID: ISSN 2469-9950
Grant/Contract Number:
AC52-06NA25396
Type:
Accepted Manuscript
Journal Name:
Physical Review B
Additional Journal Information:
Journal Volume: 94; Journal Issue: 4; Journal ID: ISSN 2469-9950
Publisher:
American Physical Society (APS)
Research Org:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY