skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Vulnerability of the US western electric grid to hydro-climatological conditions: How bad can it get?

Journal Article · · Energy (Oxford)

Recent studies have highlighted the potential impact of climate change on US electricity generation capacity by exploring the effect of changes in stream temperatures on available capacity of thermo-electric plants that rely on fresh-water cooling. However, little is known about the electric system impacts under extreme climate event such as drought. Vulnerability assessments are usually performed for a baseline water year or a specific drought, which do not provide insights into the full grid stress distribution across the diversity of climate events. In this paper we estimate the impacts of the water availability on the electricity generation and transmission in the Western US grid for a range of historical water availability combinations. We softly couple an integrated water model, which includes climate, hydrology, routing, water resources management and socio-economic water demand models, into a grid model (production cost model) and simulate 30 years of historical hourly power flow conditions in the Western US grid. The experiment allows estimating the grid stress distribution as a function of inter-annual variability in regional water availability. Results indicate a clear correlation between grid vulnerability (as quantified in unmet energy demand and increased production cost) for the summer month of August and annual water availability. There is a 3% chance that at least 6% of the electricity demand cannot be met in August, and 21% chance of not meeting 0.5% of the load in the Western US grid. There is a 3% chance that at least 6% of the electricity demand cannot be met in August, and 21% chance of not meeting 0.1% or more of the load in the Western US grid. The regional variability in water availability contributes significantly to the reliability of the grid and could provide trade off opportunities in times of stress. This paper is the first to explore operational grid impacts imposed by droughts in the Western U.S. grid.

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
1336008
Report Number(s):
PNNL-SA-112684
Journal Information:
Energy (Oxford), Vol. 115, Issue P1; ISSN 0360-5442
Publisher:
Elsevier
Country of Publication:
United States
Language:
English