skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Characterization of the Wilson disease gene: Genomic organization; alternative splicing; structure/function predictions; and population frequencies of disease-specific mutations

Journal Article · · American Journal of Human Genetics
OSTI ID:133432
; ;  [1]
  1. Columbia Univ., New York, NY (United States); and others

The Wilson disease (WD) gene has recently been identified as a putative copper-transporting ATPase with high amino acid similarity with the Menkes disease (MNK) gene. We have further characterized the WD gene by extending the 5{prime}-coding and non-coding DNA sequence and elucidating the intron/exon structure and genomic organization. Analysis of RNA transcripts from liver, brain, kidney and placenta reveals extensive alternative splicing which may provide a mechanism to regulate the quantity of functional protein product. Comparative sequence analysis shows that WD and MNK belong to the sub-family of heavy metal-transporting ATPases with several characterizing features which include unique amino acid motifs and distinct N-terminal and C-terminal transmembrane structure. Our data indicate that the 600 amino acid metal binding portion of the WD and MNK proteins was formed by gene duplication events and splicing of the 6 metal binding domain segment to a common ancestral protein. We have raised a WD-specific anti-peptide antibody to the N-terminal region and are beginning to explore the cellular and intracellular location of the WD protein. The metal-binding segment of the WD protein has been expressed in E. coli and metal binding assays are underway to characterize this aspect of the protein`s function. We have identified numerous disease-specific mutations and developed a rapid {open_quotes}reverse dot blot{close_quotes} screening protocol to determine mutation frequencies in different populations. The most common mutation disrupts the characteristic SEHP motif and accounts for more than 40% of WD cases in North American, Russian, and Swedish populations. This mutation has not been observed in our limited Sicilian sample.

OSTI ID:
133432
Report Number(s):
CONF-941009-; ISSN 0002-9297; TRN: 95:005313-0160
Journal Information:
American Journal of Human Genetics, Vol. 55, Issue Suppl.3; Conference: 44. annual meeting of the American Society of Human Genetics, Montreal (Canada), 18-22 Oct 1994; Other Information: PBD: Sep 1994
Country of Publication:
United States
Language:
English