skip to main content

Title: From Complex Magnetism Ordering to Simple Ferromagnetism in Two-Dimensional LaCrSb{sub 3} by Hole Doping.

Competing orders widely exist in many material systems, such as superconductivity, magnetism, and ferroelectricity; LaCrSb3 is a highly anisotropic magnetic material in which the spins are aligned ferromagnetically in one direction and canted antiferromagnetically in another in the Cr-Sb chains. Hole doping with Sr2+ and Ca2+ in the La site suppresses the antiferromagnetic correlations and transforms the anisotropic magnetic order into a ferromagnetic lattice in all directions. First-principles density functional theory calculations show that the canted magnetic order becomes energetically less favorable compared to the FM order upon hole doping. Doping in the La site is an effective approach to modulate the competing orders in LaCrSb3.
; ; ; ; ; ; ; ;
Publication Date:
OSTI Identifier:
DOE Contract Number:
Resource Type:
Journal Article
Resource Relation:
Journal Name: Physical Review, B: Condensed Matter; Journal Volume: 94; Journal Issue: 13
American Physical Society (APS)
Research Org:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org:
USDOE Office of Science - Office of Basic Energy Sciences - Materials Sciences and Engineering Division; USDOE Office of Science - Energy Frontier Research Center - Center for Emergent Superconductivity
Country of Publication:
United States