skip to main content

Title: Printed interconnects for photovoltaic modules

Film-based photovoltaic modules employ monolithic interconnects to minimize resistance loss and enhance module voltage via series connection. Conventional interconnect construction occurs sequentially, with a scribing step following deposition of the bottom electrode, a second scribe after deposition of absorber and intermediate layers, and a third following deposition of the top electrode. This method produces interconnect widths of about 300 um, and the area comprised by interconnects within a module (generally about 3%) does not contribute to power generation. The present work reports on an increasingly popular strategy capable of reducing the interconnect width to less than 100 um: printing interconnects. Cost modeling projects a savings of about $0.02/watt for CdTe module production through the use of printed interconnects, with savings coming from both reduced capital expense and increased module power output. Printed interconnect demonstrations with copper-indium-gallium-diselenide and cadmium-telluride solar cells show successful voltage addition and miniaturization down to 250 um. Material selection guidelines and considerations for commercialization are discussed.
; ; ; ; ;
Publication Date:
OSTI Identifier:
Report Number(s):
Journal ID: ISSN 0927-0248
DOE Contract Number:
Resource Type:
Journal Article
Resource Relation:
Journal Name: Solar Energy Materials and Solar Cells; Journal Volume: 159
Research Org:
NREL (National Renewable Energy Laboratory (NREL), Golden, CO (United States))
Sponsoring Org:
USDOE Office of Energy Efficiency and Renewable Energy (EERE); Bay Area Photovoltaic Consortium
Country of Publication:
United States
14 SOLAR ENERGY; 36 MATERIALS SCIENCE thin-film photovoltaics; module construction; monolithic interconnects; printing