skip to main content

SciTech ConnectSciTech Connect

Title: Feasibility of a Fieldable Mass Spectrometer FY 2015 Year-end Report

Currently, the International Atomic Energy Agency (IAEA) monitors the production of enriched uranium hexafluoride (UF6) at declared facilities by collecting a few grams of product in sample tubes that are then sent to central laboratories for processing and isotope ratio analysis by thermal ionization mass spectrometry. Analysis of results may not be available for some time after collection. In addition, new shipping regulations will make it more difficult to transport this amount of UF6 to a laboratory. The IAEA is interested in an isotope ratio technique for uranium in UF6 that can be moved to and operated at the enrichment facility itself. This report covers the tasks and activities of the Feasibility of a Fieldable Mass Spectrometer Project for FY 2015, which investigates the feasibility of an in-field isotope ratio technique— the forward deployment of a technique to the non-laboratory situation of a protected room with power and heat at the facility of interest. A variety of nontraditional elemental ionization techniques were considered. It was determined that only two of these should be moved forward for testing with the candidate in-field mass spectrometer and with the adsorbed UF6 sample types.
Authors:
 [1] ;  [1] ;  [1] ;  [1] ;  [1]
  1. Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Publication Date:
OSTI Identifier:
1328065
Report Number(s):
PNNL--24842
DN4001030; TRN: US1700047
DOE Contract Number:
AC05-76RL01830
Resource Type:
Technical Report
Research Org:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org:
USDOE
Country of Publication:
United States
Language:
English
Subject:
46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY; 98 NUCLEAR DISARMAMENT, SAFEGUARDS, AND PHYSICAL PROTECTION; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; FEASIBILITY STUDIES; ENRICHED URANIUM; MASS SPECTROMETERS; ISOTOPE RATIO; URANIUM HEXAFLUORIDE; IAEA SAFEGUARDS; ISOTOPE SEPARATION PLANTS; MONITORS; ENRICHMENT; IONIZATION