skip to main content

SciTech ConnectSciTech Connect

Title: Extended Glauert tip correction to include vortex rollup effects

Wind turbine loads predictions by blade-element momentum theory using the standard tip-loss correction have been shown to over-predict loading near the blade tip in comparison to experimental data. This over-prediction is theorized to be due to the assumption of light rotor loading, inherent in the standard tip-loss correction model of Glauert. A higher- order free-wake method, WindDVE, is used to compute the rollup process of the trailing vortex sheets downstream of wind turbine blades. Results obtained serve an exact correction function to the Glauert tip correction used in blade-element momentum methods. Lastly, it is found that accounting for the effects of tip vortex rollup within the Glauert tip correction indeed results in improved prediction of blade tip loads computed by blade-element momentum methods.
Authors:
 [1] ;  [2]
  1. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
  2. The Pennsylvania State Univ., University Park, PA (United States)
Publication Date:
OSTI Identifier:
1327908
Report Number(s):
SAND--2016-9474J
Journal ID: ISSN 1742-6588; 647667
Grant/Contract Number:
AC04-94AL85000
Type:
Accepted Manuscript
Journal Name:
Journal of Physics. Conference Series
Additional Journal Information:
Journal Volume: 753; Journal ID: ISSN 1742-6588
Publisher:
IOP Publishing
Research Org:
Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Wind and Hydropower Technology Program (EE-2B)
Country of Publication:
United States
Language:
English
Subject:
17 WIND ENERGY; 42 ENGINEERING