skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Quench protection study of the updated MQXF for the LHC luminosity upgrade (HiLumi LHC)

Journal Article · · IEEE Transactions on Applied Superconductivity
 [1];  [2];  [3];  [3];  [3];  [4];  [5];  [3]
  1. Univ. of Milano, Milano (Italy)
  2. Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
  3. European Organization for Nuclear Research (CERN), Geneva (Switzerland)
  4. Tampere Univ. of Technology, Tampere (Finland)
  5. Univ. of Milano, Milan (Italy)

In 2023, the LHC luminosity will be increased, aiming at reaching 3000 fb-1 integrated over ten years. To obtain this target, new Nb3Sn low-β quadrupoles (MQXF) have been designed for the interaction regions. These magnets present a very large aperture (150 mm, to be compared with the 70 mm of the present NbTi quadrupoles) and a very large stored energy density (120 MJ/m3). For these reasons, quench protection is one of the most challenging aspects of the design of these magnets. In fact, protection studies of a previous design showed that the simulated hot spot temperature was very close to the maximum allowed limit of 350 K; this challenge motivated improvements in the current discharge modeling, taking into account the so-called dynamic effects on the apparent magnet inductance. Moreover, quench heaters design has been studied to be going into more details. In this study, a protection study of the updated MQXF is presented, benefiting from the experience gained by studying the previous design. As a result, a study of the voltages between turns in the magnet is also presented during both normal operation and most important failure scenarios.

Research Organization:
Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
Sponsoring Organization:
USDOE Office of Science (SC), High Energy Physics (HEP)
Grant/Contract Number:
AC02-07CH11359
OSTI ID:
1327418
Report Number(s):
FERMILAB-PUB-16-396-TD; 1479356
Journal Information:
IEEE Transactions on Applied Superconductivity, Vol. 26, Issue 4; ISSN 1051-8223
Publisher:
Institute of Electrical and Electronics Engineers (IEEE)Copyright Statement
Country of Publication:
United States
Language:
English
Citation Metrics:
Cited by: 2 works
Citation information provided by
Web of Science