skip to main content

Title: Alternative Alkaline Conditioning of Amidoxime Based Adsorbent for Uranium Extraction from Seawater

Alkaline conditioning of the amidoxime based adsorbents is a significant step in the preparation of the adsorbent for uranium uptake from seawater. The effects of various alkaline conditioning parameters such as the type of alkaline reagent, reaction temperature, and reaction time were investigated with respect to uranium adsorption capacity from simulated seawater (spiked with 8 ppm uranium) and natural seawater (from Sequim Bay, WA). An adsorbent (AF1) was prepared at the Oak Ridge National Laboratory by radiation-induced graft polymerization (RIGP) with acrylonitrile and itaconic acid onto high-surface-area polyethylene fibers. For the AF1 adsorbent, sodium hydroxide emerged as a better reagent for alkaline conditioning over potassium hydroxide, which has typically been used in previous studies, because of higher uranium uptake capacity and lower cost over the other candidate alkaline reagents investigated in this study. Use of sodium hydroxide in place of potassium hydroxide is shown to result in a 21-30% decrease in the cost of uranium recovery.
; ; ; ; ; ; ; ; ; ;
Publication Date:
OSTI Identifier:
Report Number(s):
Journal ID: ISSN 0888-5885; AF5855000
DOE Contract Number:
Resource Type:
Journal Article
Resource Relation:
Journal Name: Industrial and Engineering Chemistry Research; Journal Volume: 55; Journal Issue: 15
American Chemical Society (ACS)
Research Org:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org:
USDOE Office of Nuclear Energy (NE)
Country of Publication:
United States
11 NUCLEAR FUEL CYCLE AND FUEL MATERIALS; uranium from seawater; Amidoxime