skip to main content

This content will become publicly available on August 28, 2017

Title: Magnetic microstructure and magnetic properties of uniaxial itinerant ferromagnet Fe3GeTe2

Here, magnetic force microscopy was used to observe the magnetic microstructure of Fe3GeTe2 at 4 K on the (001) surface. The surface magnetic structure consists of a two-phase domain branching pattern that is characteristic for highly uniaxial magnets in the plane perpendicular to the magnetic easy axis. The average surface magnetic domain width Ds = 1.3 μm determined from this pattern, in combination with intrinsic properties calculated from bulk magnetization data (the saturation magnetization Ms = 376 emu/cm3 and the uniaxial magnetocrystalline anisotropy constant Ku = 1.46 × 107 erg/cm3), was used to determine the following micromagnetic parameters for Fe3GeTe2 from phenomenological models: the domain wall energy γw = 4.7 erg/cm2, the domain wall thickness δw = 2.5 nm, the exchange stiffness constant Aex = 0.95 × 10–7 erg/cm, the exchange length lex = 2.3 nm, and the critical single domain particle diameter dc = 470 nm.
ORCiD logo [1] ;  [1] ;  [1] ;  [1] ;  [1]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
OSTI Identifier:
Report Number(s):
Journal ID: ISSN 0021-8979; JAPIAU
Grant/Contract Number:
AC52-06NA25396; DEAC52-06NA25396
Accepted Manuscript
Journal Name:
Journal of Applied Physics
Additional Journal Information:
Journal Volume: 120; Journal Issue: 8; Journal ID: ISSN 0021-8979
American Institute of Physics (AIP)
Research Org:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org:
Country of Publication:
United States