skip to main content

Title: Advanced TEM characterization of oxide nanoparticles in ODS Fe–12Cr–5Al alloys

For oxide nanoparticles present in three oxide-dispersion-strengthened (ODS) Fe–12Cr–5Al alloys containing additions of (1) Y 2O 3 (125Y), (2) Y 2O 3 + ZrO 2 (125YZ), and (3) Y 2O 3 + HfO 2 (125YH), were investigated using transmission and scanning transmission electron microscopy. Furthermore, in all three alloys nano-sized (<3.5 nm) oxide particles distributed uniformly throughout the microstructure were characterized using advanced electron microscopy techniques. In the 125Y alloy, mainly Al 2O 3 and yttrium–aluminum garnet (YAG) phases (Y 3Al 5O 12) were present, while in the 125YZ alloy, additional Zr(C,N) precipitates were identified. The 125YH alloy had the most complex precipitation sequence whereby in addition to the YAG and Al 2O 3 phases, Hf(C,N), Y 2Hf 2O 7, and HfO 2 precipitates were also found. The presence of HfO 2 was mainly due to the incomplete incorporation of HfO 2 powder during mechanical alloying of the 125YH alloy. The alloy having the highest total number density of the oxides, the smallest grain size, and the highest Vickers hardness was the 125YZ alloy indicating, that Y 2O 3 + ZrO 2 additions had the strongest effect on grain size and tensile properties. Finally, high-temperature mechanical testing will be addressedmore » in the near future, while irradiation studies are underway to investigate the irradiation resistance of these new ODS FeCrAl alloys.« less
 [1] ;  [1] ;  [1]
  1. ORNL
Publication Date:
OSTI Identifier:
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Journal of Materials Science
Additional Journal Information:
Journal Volume: 51; Journal Issue: 20; Journal ID: ISSN 0022-2461
Research Org:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)
Sponsoring Org:
USDOE Office of Science (SC), Fusion Energy Sciences (FES) (SC-24)
Country of Publication:
United States