skip to main content

SciTech ConnectSciTech Connect

Title: A experimental research program on chirality at the LHC

Heavy-ion collisions provide a unique opportunity to investigate the fundamental laws of physics of the strong force. The extreme conditions created by the collisions within a finite volume are akin to the properties of the deconfined partonic state which existed very shortly after the Big Bang and just prior to visible matter formation in the Universe. In this state massless quarks and gluons (partons) are ``quasi free" particles, the so-called Quark Gluon Plasma (QGP). By following the expansion and cooling of this state, we will map out the process of nucleonic matter formation, which occurs during the phase transition. The fundamental properties of this early partonic phase of matter are not well understood, but they are essential for confirming QCD (Quantum Chromo-Dynamics) and the Standard Model. The specific topic, chiral symmetry restoration, has been called ``the remaining puzzle of QCD.'' This puzzle can only be studied in the dense partonic medium generated in heavy-ion collisions. The research objectives of this proposal are the development and application of new analysis strategies to study chirality and the properties of the medium above the QGP phase transition using hadronic resonances detected with the ALICE experiment at the Large Hadron Collider (LHC) at themore » CERN research laboratory in Switzerland. This grant funded a new effort at the University of Texas at Austin (UT Austin) to investigate the Quark Gluon Plasma (QGP) at the highest possible energy of 2.76 TeV per nucleon at the Large Hadron Collider (LHC) at CERN via the ALICE experiment. The findings added to our knowledge of the dynamical evolution and the properties of the hot, dense matter produced in heavy-ion collisions, and provided a deeper understanding of multi-hadron interactions in these extreme nuclear matter systems. Our group contributed as well to the hardware and software for the ALICE USA-funded Calorimeter Detector (EMCal). The LHC research program and its connection to fundamental questions in high energy, nuclear and astrophysics has triggered the imagination of many young students worldwide. The studies also promoted the early involvement of students and young postdocs in a large, multi-national research effort abroad, which provided them with substantial experience and skills prior to choosing their career path. The undergraduate program, in conjunction with the Freshman Research Initiative at UT Austin, allowed the students to complete a research project within the field of Nuclear Physics.« less
Authors:
 [1]
  1. Univ. of Texas, Austin, TX (United States)
Publication Date:
OSTI Identifier:
1325001
DOE Contract Number:
SC0003892
Resource Type:
Technical Report
Research Org:
Univ. of Texas, Austin, TX (United States)
Sponsoring Org:
USDOE Office of Science (SC), Nuclear Physics (NP) (SC-26)
Country of Publication:
United States
Language:
English
Subject:
73 NUCLEAR PHYSICS AND RADIATION PHYSICS; 72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; 46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY; CERN LHC; QUARK MATTER; NUCLEAR MATTER; CHIRALITY; GLUONS; QUARKS; HEAVY ION REACTIONS; TEXAS; HEAVY ION REACTIONS; ALICE DETECTOR; QUANTUM CHROMODYNAMICS; STANDARD MODEL; RESEARCH PROGRAMS; SHOWER COUNTERS; CHIRAL SYMMETRY; PHASE TRANSFORMATIONS; TEV RANGE; COMPUTER CODES; COOLING; EVOLUTION; EXPANSION; STRONG INTERACTIONS Heavy Ion Physics; High Energy Nuclear Physics; ALICE Experiment; LHC