skip to main content

Title: Modeling and Validation of the Thermal Response of TDI Encapsulating Foam as a function of Initial Density

TDI foams of nominal density from 10 to 45 pound per cubic foot were decomposed within a heated stainless steel container. The pressure in the container and temperatures measured by thermocouples were recorded with each test proceeding to an allowed maximum pressure before venting. Two replicate tests for each of four densities and two orientations in gravity produced very consistent pressure histories. Some thermal responses demonstrate random sudden temperature increases due to decomposition product movement. The pressurization of the container due to the generation of gaseous products is more rapid for denser foams. When heating in the inverted orientation, where gravity is in the opposite direction of the applied heat flux, the liquefied decomposition products move towards the heated plate and the pressure rises more rapidly than in the upright configuration. This effect is present at all the densities tested but becomes more pronounced as density of the foam is decreased. A thermochemical material model implemented in a transient conduction model solved with the finite element method was compared to the test data. The expected uncertainty of the model was estimated using the mean value method and importance factors for the uncertain parameters were estimated. The model that was assessedmore » does not consider the effect of liquefaction or movement of gases. The result of the comparison is that the model uncertainty estimates do not account for the variation in orientation (no gravitational affects are in the model) and therefore the pressure predictions are not distinguishable due to orientation. Temperature predictions were generally in good agreement with the experimental data. Predictions for response locations on the outside of the can benefit from reliable estimates associated with conduction in the metal. For the lighter foams, temperatures measured on the embedded component fall well with the estimated uncertainty intervals indicating the energy transport rate through the decomposed region appears to be accurately estimated. The denser foam tests were terminated at maximum allowed pressure earlier resulting in only small responses at the component. For all densities the following statements are valid: The temperature response of the embedded component in the container depends on the effective conductivity of the foam which attempts to model energy transport through the decomposed foam and on the stainless steel specific heat. The pressure response depends on the activation energy of the reactions and the density of the foam and the foam specific heat and effective conductivity. The temperature responses of other container locations depend heavily on the boundary conditions and the stainless steel conductivity and specific heat.« less
 [1] ;  [1]
  1. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Publication Date:
OSTI Identifier:
Report Number(s):
DOE Contract Number:
Resource Type:
Technical Report
Research Org:
Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sandia National Laboratories(SNL-NM), Albuquerque, NM (United States)
Sponsoring Org:
USDOE National Nuclear Security Administration (NNSA)
Country of Publication:
United States