skip to main content

Title: Using simulation to evaluate warhead monitoring system effectiveness

There is a need to develop and demonstrate technical approaches for verifying potential future agreements to limit and reduce total warhead stockpiles. To facilitate this aim, warhead monitoring systems employ both concepts of operations (CONOPS) and technologies. A systems evaluation approach can be used to assess the relative performance of CONOPS and technologies in their ability to achieve monitoring system objectives which include: 1) confidence that a treaty accountable item (TAI) initialized by the monitoring system is as declared; 2) confidence that there is no undetected diversion from the monitoring system; and 3) confidence that a TAI is dismantled as declared. Although there are many quantitative methods that can be used to assess system performance for the above objectives, this paper focuses on a simulation perspective primarily for the ability to support analysis of the probabilities that are used to define operating characteristics of CONOPS and technologies. This paper describes a discrete event simulation (DES) model, comprised of three major sub-models: including TAI lifecycle flow, monitoring activities, and declaration behavior. The DES model seeks to capture all processes and decision points associated with the progressions of virtual TAIs, with notional characteristics, through the monitoring system from initialization through dismantlement. Themore » simulation updates TAI progression (i.e., whether the generated test objects are accepted and rejected at the appropriate points) all the way through dismantlement. Evaluation of TAI lifecycles primarily serves to assess how the order, frequency, and combination of functions in the CONOPS affect system performance as a whole. It is important, however, to note that discrete event simulation is also capable (at a basic level) of addressing vulnerabilities in the CONOPS and interdependencies between individual functions as well. This approach is beneficial because it does not rely on complex mathematical models, but instead attempts to recreate the real world system as a decision and event driven simulation. Finally, because the simulation addresses warhead confirmation, chain of custody, and warhead dismantlement in a modular fashion, a discrete-event model could be easily adapted to multiple CONOPS for the exploration of a large number of “what if” scenarios.« less
; ; ; ; ; ;
Publication Date:
OSTI Identifier:
Report Number(s):
DOE Contract Number:
Resource Type:
Resource Relation:
Conference: 56th Annual Meeting of the Institute of Nuclear Materials Management (INMM 2015), July 12-16, 2015, Indian Wells, California, 1:95-104
INMM, OAKBROOK TERRACE, Illinois, United States.
Research Org:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org:
Country of Publication:
United States