skip to main content

Title: GoAmazon – Scaling Amazon Carbon Water Couplings

Forests soak up 25% of the carbon dioxide (CO 2) emitted by anthropogenic fossil energy use (10 Gt C y -1) moderating its atmospheric accumulation. How this terrestrial CO 2 uptake will evolve with climate change in the 21st century is largely unknown. Rainforests are the most active ecosystems with the Amazon basin storing 120 Gt C as biomass and exchanging 18 Gt C y -1 of CO 2 via photosynthesis and respiration and fixing carbon at 2-3 kg C m -2 y -1. Furthermore, the intense hydrologic and carbon cycles are tightly coupled in the Amazon where about half of the water is recycled by evapotranspiration and the other half imported from the ocean by Northeasterly trade winds. Climate models predict a drying in the Amazon with reduced carbon uptake while observationally guided assessments indicate sustained uptake. We will resolve this huge discrepancy in the size and sign of the future Amazon carbon cycle by performing the first simultaneous regional scale high frequency measurements of atmospheric CO 2, H 2O, HOD, CH 4, N 2O and CO at the T3 site in Manacupuru, Brazil as part of DOE's GoAmazon project. Our data will be used to inform and developmore » DOE's CLM on the tropical carbon-water couplings at the appropriate grid scale (10-50km). Our measurements will also validate the CO 2 data from Japan's GOSAT and NASA's imminent OCO-2 satellite (launch date July 2014).« less
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
OSTI Identifier:
Report Number(s):
DOE Contract Number:
Resource Type:
Technical Report
Research Org:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org:
USDOE Office of Science (SC). Biological and Environmental Research (BER) (SC-23)
Country of Publication:
United States
54 ENVIRONMENTAL SCIENCES; Planetary Sciences; Climate Carbon Tropics Forests CO2 Water