skip to main content

Title: Structures of TorsinA and its disease-mutant complexed with an activator reveal the molecular basis for primary dystonia

The most common cause of early onset primary dystonia, a neuromuscular disease, is a glutamate deletion (ΔE) at position 302/303 of TorsinA, a AAA+ ATPase that resides in the endoplasmic reticulum. While the function of TorsinA remains elusive, the ΔE mutation is known to diminish binding of two TorsinA ATPase activators: lamina-associated protein 1 (LAP1) and its paralog, luminal domain like LAP1 (LULL1). Using a nanobody as a crystallization chaperone, we obtained a 1.4 Å crystal structure of human TorsinA in complex with LULL1. This nanobody likewise stabilized the weakened TorsinAΔE-LULL1 interaction, which enabled us to solve its structure at 1.4 Å also. A comparison of these structures shows, in atomic detail, the subtle differences in activator interactions that separate the healthy from the diseased state. This information may provide a structural platform for drug development, as a small molecule that rescues TorsinAΔE could serve as a cure for primary dystonia.
ORCiD logo ; ; ; ; ORCiD logo
Publication Date:
OSTI Identifier:
Resource Type:
Journal Article
Resource Relation:
Journal Name: eLife; Journal Volume: 5; Journal Issue: 2016
eLife Sciences Publications, Ltd.
Research Org:
Advanced Photon Source (APS), Argonne National Laboratory (ANL), Argonne, IL (US)
Sponsoring Org:
Country of Publication:
United States