skip to main content

Title: Special Nuclear Material Gamma-Ray Signatures for Reachback Analysts

These are slides on special nuclear material gamma-ray signatures for reachback analysts for an LSS Spectroscopy course. The closing thoughts for this presentation are the following: SNM materials have definite spectral signatures that should be readily recognizable to analysts in both bare and shielded configurations. One can estimate burnup of plutonium using certain pairs of peaks that are a few keV apart. In most cases, one cannot reliably estimate uranium enrichment in an analogous way to the estimation of plutonium burnup. The origin of the most intense peaks from some SNM items may be indirect and from ‘associated nuclides.' Indirect SNM signatures sometimes have commonalities with the natural gamma-ray background.
Authors:
 [1] ;  [1]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
OSTI Identifier:
1312618
Report Number(s):
LA-UR--16-26068
TRN: US1601820
DOE Contract Number:
AC52-06NA25396
Resource Type:
Technical Report
Research Org:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org:
USDOE National Nuclear Security Administration (NNSA)
Country of Publication:
United States
Language:
English
Subject:
11 NUCLEAR FUEL CYCLE AND FUEL MATERIALS; 46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY; 98 NUCLEAR DISARMAMENT, SAFEGUARDS, AND PHYSICAL PROTECTION; GAMMA SPECTRA; PLUTONIUM; URANIUM; KEV RANGE; NATURAL RADIOACTIVITY; BURNUP; PEAKS; FISSILE MATERIALS; GAMMA SPECTROSCOPY; LIQUID SCINTILLATION DETECTORS; ISOTOPE RATIO; TRAINING gamma; plutonium; special nuclear material