skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Synthesis of Pyridine– and Pyrazine–BF 3 Complexes and Their Characterization in Solution and Solid State

Journal Article · · Journal of Physical Chemistry. C

Following the discovery of the redox-active 1,4- bis-BF3-quinoxaline complex, we undertook a structure- activity study with the objective to understand the active nature of the quinoxaline complex. Through systematic synthesis and characterization, we have compared complexes prepared from pyridine and pyrazine derivatives, as heterocyclic core analogues. This paper reports the structural requirements that give rise to the electrochemical features of the 1,4-bis-BF3-quinoxaline adduct. Using solution and solidstate NMR spectroscopy, the role of aromatic ring fusion and nitrogen incorporation in bonding and electronics was elucidated. We establish the boron atom location and its interaction with its environment from 1D and 2D solution NMR, X-ray diffraction analysis, and 11B solid-state NMR experiments. Crystallographic analysis of single crystals helped to correlate the boron geometry with 11B quadrupolar coupling constant (CQ) and asymmetry parameter (ηQ), extracted from 11B solid-state NMR spectra. Additionally, computations based on density functional theory were performed to predict electrochemical behavior of the BF3-heteroaromatic complexes. We then experimentally measured electrochemical potential using cyclic voltammetry and found that the redox potentials and CQ values are similarly affected by electronic changes in the complexes.

Research Organization:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Organization:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
DOE Contract Number:
AC02-06CH11357
OSTI ID:
1307392
Journal Information:
Journal of Physical Chemistry. C, Vol. 120, Issue 16; ISSN 1932-7447
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English