skip to main content

Title: Synthesis-Structure–Function Relationships of Silica-Supported Niobium(V) Catalysts for Alkene Epoxidation with H 2 O 2

Many industrially significant selective oxidation reactions are catalyzed by supported and bulk transition metal oxides. Catalysts for the synthesis of oxygenates, and especially for epoxidation, have predominantly focused on TiO x supported on or co-condensed with SiO 2, whereas much of the rest of Groups 4 and 5 have been less studied. We have recently demonstrated through periodic trends using a uniform molecular precursor that niobium(V)-silica catalysts reveal the highest activity and selectivity for efficient utilization of H 2O 2 for epoxidation across all of Groups 4 and 5. In this work, we graft a wide range of Nb(V) precursors, spanning surface densities of 0.07–1.6 Nb groups nm –2 on mesoporous silica, and we characterize these materials with UV–visible spectroscopy and Nb K-edge XANES. Further, we apply in situ chemical titration with phenylphosphonic acid (PPA) in the epoxidation of cis-cyclooctene by H 2O 2 to probe the numbers and nature of the active sites across this series and in a set of related Ti-, Zr-, Hf-, and Ta-SiO2 catalysts. By this method, the fraction of kinetically relevant NbO x species ranges from ~15% to ~65%, which correlates with spectroscopic evaluation of the NbO x sites. This titration leads to amore » single value for the average turnover frequency, on a per active site basis rather than a per Nb atom basis, of 1.4 ± 0.52 min –1 across the 21 materials in the series. These quantitative maps of structural properties and kinetic consequences link key catalyst descriptors of supported Nb-SiO 2 to enable rational design for next-generation oxidation catalysts.« less
; ; ;
Publication Date:
OSTI Identifier:
Resource Type:
Journal Article
Resource Relation:
Journal Name: ACS Catalysis; Journal Volume: 6; Journal Issue: 07, 2016
American Chemical Society
Research Org:
Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States