skip to main content

Title: Analysis of the SPS Long Term Orbit Drifts

The Super Proton Synchrotron (SPS) is the last accelerator in the Large Hadron Collider (LHC) injector chain, and has to deliver the two high-intensity 450 GeV proton beams to the LHC. The transport from SPS to LHC is done through the two Transfer Lines (TL), TI2 and TI8, for Beam 1 (B1) and Beam 2 (B2) respectively. During the first LHC operation period Run 1, a long term drift of the SPS orbit was observed, causing changes in the LHC injection due to the resulting changes in the TL trajectories. This translated into longer LHC turnaround because of the necessity to periodically correct the TL trajectories in order to preserve the beam quality at injection into the LHC. Different sources for the SPS orbit drifts have been investigated: each of them can account only partially for the total orbit drift observed. In this paper, the possible sources of such drift are described, together with the simulated and measured effect they cause. Possible solutions and countermeasures are also discussed.
Authors:
 [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [2] ;  [1] ;  [1] ;  [1]
  1. CERN
  2. Fermilab
Publication Date:
OSTI Identifier:
1294436
Report Number(s):
FERMILAB-CONF-16-243-APC; IPAC-2016-THPOR054
1470648
DOE Contract Number:
AC02-07CH11359
Resource Type:
Conference
Resource Relation:
Conference: 7th International Particle Accelerator Conference, Busan, Korea, 05/08-05/13/2016
Research Org:
Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)
Sponsoring Org:
USDOE Office of Science (SC), High Energy Physics (HEP) (SC-25)
Country of Publication:
United States
Language:
English
Subject:
43 PARTICLE ACCELERATORS