skip to main content

SciTech ConnectSciTech Connect

Title: Probing Light Thermal Dark-Matter With a Higgs Portal Mediator

We systematically study light (< few GeV) Dark Matter (DM) models that thermalize with visible matter through the Higgs portal and identify the remaining gaps in the viable parameter space. Such models require a comparably light scalar mediator that mixes with the Higgs to avoid DM overproduction and can be classified according to whether this mediator decays (in)visibly. In a representative benchmark model with Dirac fermion DM, we find that, even with conservative assumptions about the DM-mediator coupling and mass ratio, the regime in which the mediator is heavier than the DM is fully ruled out by a combination of collider, rare meson decay, and direct detection limits; future and planned experiments including NA62 can further improve sensitivity to scenarios in which the Higgs portal interaction does not determine the DM abundance. The opposite, regime in which the mediator is lighter than the DM and the latter annihilates to pairs of visibly-decaying mediators is still viable, but much of the parameter space is covered by rare meson decay, supernova cooling, beam dump, and direct detection constraints. Nearly all of these conclusions apply broadly to the simplest variations (e.g. scalar or asymmetric DM). Future experiments including SHiP, NEWS, and Super-CDMS SNOLABmore » can greatly improve coverage to this class of models.« less
Authors:
 [1]
  1. Fermilab
Publication Date:
OSTI Identifier:
1288733
Report Number(s):
arXiv:1512.04119; FERMILAB-PUB-15-550-A
1409444
DOE Contract Number:
AC02-07CH11359
Resource Type:
Journal Article
Resource Relation:
Journal Name: Phys.Rev.D
Research Org:
Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)
Sponsoring Org:
USDOE Office of Science (SC), High Energy Physics (HEP) (SC-25)
Country of Publication:
United States
Language:
English
Subject:
79 ASTRONOMY AND ASTROPHYSICS; 72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS