skip to main content

Title: INJECTION OPTICS FOR THE JLEIC ION COLLIDER RING

The Jefferson Lab Electron-Ion Collider (JLEIC) will accelerate protons and ions from 8 GeV to 100 GeV. A very low beta function at the Interaction Point (IP) is needed to achieve the required luminosity. One consequence of the low beta optics is that the beta function in the final focusing (FF) quadrupoles is extremely high. This leads to a large beam size in these magnets as well as strong sensitivity to errors which limits the dynamic aperture. These effects are stronger at injection energy where the beam size is maximum, and therefore very large aperture FF magnets are required to allow a large dynamic aperture. A standard solution is a relaxed injection optics with IP beta function large enough to provide a reasonable FF aperture. This also reduces the effects of FF errors resulting in a larger dynamic aperture at injection. We describe the ion ring injection optics design as well as a beta-squeeze transition from the injection to collision optics.
Authors:
 [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [2] ;  [2] ;  [2] ;  [2]
  1. Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
  2. SLAC National Accelerator Lab., Menlo Park, CA (United States)
Publication Date:
OSTI Identifier:
1285960
Report Number(s):
JLAB-ACP-16-2306; DOE/OR/23177-3883
DOE Contract Number:
AC05-06OR23177; AC02-06CH11357; AC02-76SF00515
Resource Type:
Conference
Resource Relation:
Conference: IPAC'16, 08-13 May 2016. Busan, Korea
Research Org:
Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)
Sponsoring Org:
USDOE Office of Science (SC), Nuclear Physics (NP) (SC-26)
Country of Publication:
United States
Language:
English