skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Materials Data on MnPO4 by Materials Project

Dataset ·
DOI:https://doi.org/10.17188/1285728· OSTI ID:1285728

MnPO4 crystallizes in the monoclinic Cc space group. The structure is three-dimensional. there are eight inequivalent Mn3+ sites. In the first Mn3+ site, Mn3+ is bonded to four O2- atoms to form MnO4 tetrahedra that share corners with four PO4 tetrahedra. There is two shorter (1.91 Å) and two longer (1.94 Å) Mn–O bond length. In the second Mn3+ site, Mn3+ is bonded to four O2- atoms to form distorted MnO4 tetrahedra that share corners with four PO4 tetrahedra. There are a spread of Mn–O bond distances ranging from 1.92–1.95 Å. In the third Mn3+ site, Mn3+ is bonded to four O2- atoms to form distorted MnO4 tetrahedra that share corners with four PO4 tetrahedra. There are a spread of Mn–O bond distances ranging from 1.92–1.94 Å. In the fourth Mn3+ site, Mn3+ is bonded to four O2- atoms to form MnO4 tetrahedra that share corners with four PO4 tetrahedra. There are a spread of Mn–O bond distances ranging from 1.89–1.94 Å. In the fifth Mn3+ site, Mn3+ is bonded to four O2- atoms to form MnO4 tetrahedra that share corners with four PO4 tetrahedra. There are a spread of Mn–O bond distances ranging from 1.91–1.96 Å. In the sixth Mn3+ site, Mn3+ is bonded to four O2- atoms to form MnO4 tetrahedra that share corners with four PO4 tetrahedra. There are a spread of Mn–O bond distances ranging from 1.91–1.94 Å. In the seventh Mn3+ site, Mn3+ is bonded to four O2- atoms to form MnO4 tetrahedra that share corners with four PO4 tetrahedra. There are a spread of Mn–O bond distances ranging from 1.90–1.95 Å. In the eighth Mn3+ site, Mn3+ is bonded to four O2- atoms to form MnO4 tetrahedra that share corners with four PO4 tetrahedra. There are a spread of Mn–O bond distances ranging from 1.92–1.95 Å. There are eight inequivalent P5+ sites. In the first P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with four MnO4 tetrahedra. There are a spread of P–O bond distances ranging from 1.54–1.56 Å. In the second P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with four MnO4 tetrahedra. All P–O bond lengths are 1.55 Å. In the third P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with four MnO4 tetrahedra. There are a spread of P–O bond distances ranging from 1.54–1.56 Å. In the fourth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with four MnO4 tetrahedra. There are a spread of P–O bond distances ranging from 1.54–1.56 Å. In the fifth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with four MnO4 tetrahedra. There are a spread of P–O bond distances ranging from 1.54–1.56 Å. In the sixth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with four MnO4 tetrahedra. There are a spread of P–O bond distances ranging from 1.54–1.56 Å. In the seventh P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with four MnO4 tetrahedra. There is three shorter (1.55 Å) and one longer (1.56 Å) P–O bond length. In the eighth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with four MnO4 tetrahedra. There are a spread of P–O bond distances ranging from 1.54–1.56 Å. There are thirty-two inequivalent O2- sites. In the first O2- site, O2- is bonded in a distorted bent 120 degrees geometry to one Mn3+ and one P5+ atom. In the second O2- site, O2- is bonded in a bent 150 degrees geometry to one Mn3+ and one P5+ atom. In the third O2- site, O2- is bonded in a distorted bent 120 degrees geometry to one Mn3+ and one P5+ atom. In the fourth O2- site, O2- is bonded in a bent 150 degrees geometry to one Mn3+ and one P5+ atom. In the fifth O2- site, O2- is bonded in a bent 120 degrees geometry to one Mn3+ and one P5+ atom. In the sixth O2- site, O2- is bonded in a bent 150 degrees geometry to one Mn3+ and one P5+ atom. In the seventh O2- site, O2- is bonded in a bent 120 degrees geometry to one Mn3+ and one P5+ atom. In the eighth O2- site, O2- is bonded in a bent 150 degrees geometry to one Mn3+ and one P5+ atom. In the ninth O2- site, O2- is bonded in a distorted bent 120 degrees geometry to one Mn3+ and one P5+ atom. In the tenth O2- site, O2- is bonded in a bent 120 degrees geometry to one Mn3+ and one P5+ atom. In the eleventh O2- site, O2- is bonded in a bent 120 degrees geometry to one Mn3+ and one P5+ atom. In the twelfth O2- site, O2- is bonded in a bent 150 degrees geometry to one Mn3+ and one P5+ atom. In the thirteenth O2- site, O2- is bonded in a distorted bent 120 degrees geometry to one Mn3+ and one P5+ atom. In the fourteenth O2- site, O2- is bonded in a bent 120 degrees geometry to one Mn3+ and one P5+ atom. In the fifteenth O2- site, O2- is bonded in a bent 150 degrees geometry to one Mn3+ and one P5+ atom. In the sixteenth O2- site, O2- is bonded in a bent 120 degrees geometry to one Mn3+ and one P5+ atom. In the seventeenth O2- site, O2- is bonded in a distorted bent 120 degrees geometry to one Mn3+ and one P5+ atom. In the eighteenth O2- site, O2- is bonded in a bent 120 degrees geometry to one Mn3+ and one P5+ atom. In the nineteenth O2- site, O2- is bonded in a distorted bent 120 degrees geometry to one Mn3+ and one P5+ atom. In the twentieth O2- site, O2- is bonded in a bent 120 degrees geometry to one Mn3+ and one P5+ atom. In the twenty-first O2- site, O2- is bonded in a bent 150 degrees geometry to one Mn3+ and one P5+ atom. In the twenty-second O2- site, O2- is bonded in a distorted bent 120 degrees geometry to one Mn3+ and one P5+ atom. In the twenty-third O2- site, O2- is bonded in a bent 150 degrees geometry to one Mn3+ and one P5+ atom. In the twenty-fourth O2- site, O2- is bonded in a bent 120 degrees geometry to one Mn3+ and one P5+ atom. In the twenty-fifth O2- site, O2- is bonded in a bent 120 degrees geometry to one Mn3+ and one P5+ atom. In the twenty-sixth O2- site, O2- is bonded in a distorted bent 150 degrees geometry to one Mn3+ and one P5+ atom. In the twenty-seventh O2- site, O2- is bonded in a bent 150 degrees geometry to one Mn3+ and one P5+ atom. In the twenty-eighth O2- site, O2- is bonded in a distorted bent 120 degrees geometry to one Mn3+ and one P5+ atom. In the twenty-ninth O2- site, O2- is bonded in a bent 120 degrees geometry to one Mn3+ and one P5+ atom. In the thirtieth O2- site, O2- is bonded in a bent 120 degrees geometry to one Mn3+ and one P5+ atom. In the thirty-first O2- site, O2- is bonded in a bent 120 degrees geometry to one Mn3+ and one P5+ atom. In the thirty-second O2- site, O2- is bonded in a distorted bent 120 degrees geometry to one Mn3+ and one P5+ atom.

Research Organization:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). LBNL Materials Project
Sponsoring Organization:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
Contributing Organization:
MIT; UC Berkeley; Duke; U Louvain
DOE Contract Number:
AC02-05CH11231; EDCBEE
OSTI ID:
1285728
Report Number(s):
mp-704492
Resource Relation:
Related Information: https://materialsproject.org/citing
Country of Publication:
United States
Language:
English

Similar Records

Materials Data on MnPO4 by Materials Project
Dataset · Mon Aug 03 00:00:00 EDT 2020 · OSTI ID:1285728

Materials Data on Mn2Fe(PO4)3 by Materials Project
Dataset · Wed Apr 29 00:00:00 EDT 2020 · OSTI ID:1285728

Materials Data on MnPO4 by Materials Project
Dataset · Wed Jul 15 00:00:00 EDT 2020 · OSTI ID:1285728