skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Materials Data on CaLa9Ti5Cr5O30 by Materials Project

Dataset ·
DOI:https://doi.org/10.17188/1284726· OSTI ID:1284726

CaLa9Ti5Cr5O30 is Orthorhombic Perovskite-derived structured and crystallizes in the triclinic P1 space group. The structure is three-dimensional. Ca2+ is bonded in a 3-coordinate geometry to nine O2- atoms. There are a spread of Ca–O bond distances ranging from 2.40–2.86 Å. There are nine inequivalent La3+ sites. In the first La3+ site, La3+ is bonded in a 3-coordinate geometry to nine O2- atoms. There are a spread of La–O bond distances ranging from 2.38–2.85 Å. In the second La3+ site, La3+ is bonded in a 3-coordinate geometry to nine O2- atoms. There are a spread of La–O bond distances ranging from 2.37–2.84 Å. In the third La3+ site, La3+ is bonded in a 3-coordinate geometry to nine O2- atoms. There are a spread of La–O bond distances ranging from 2.38–2.85 Å. In the fourth La3+ site, La3+ is bonded in a 3-coordinate geometry to nine O2- atoms. There are a spread of La–O bond distances ranging from 2.41–2.84 Å. In the fifth La3+ site, La3+ is bonded in a 3-coordinate geometry to nine O2- atoms. There are a spread of La–O bond distances ranging from 2.40–2.83 Å. In the sixth La3+ site, La3+ is bonded in a 3-coordinate geometry to nine O2- atoms. There are a spread of La–O bond distances ranging from 2.38–2.85 Å. In the seventh La3+ site, La3+ is bonded in a 3-coordinate geometry to nine O2- atoms. There are a spread of La–O bond distances ranging from 2.42–2.83 Å. In the eighth La3+ site, La3+ is bonded in a 3-coordinate geometry to nine O2- atoms. There are a spread of La–O bond distances ranging from 2.39–2.84 Å. In the ninth La3+ site, La3+ is bonded in a 3-coordinate geometry to nine O2- atoms. There are a spread of La–O bond distances ranging from 2.38–2.82 Å. There are five inequivalent Ti4+ sites. In the first Ti4+ site, Ti4+ is bonded to six O2- atoms to form TiO6 octahedra that share corners with three TiO6 octahedra and corners with three CrO6 octahedra. The corner-sharing octahedra tilt angles range from 19–24°. There are a spread of Ti–O bond distances ranging from 1.96–2.04 Å. In the second Ti4+ site, Ti4+ is bonded to six O2- atoms to form TiO6 octahedra that share corners with two equivalent TiO6 octahedra and corners with four CrO6 octahedra. The corner-sharing octahedra tilt angles range from 21–23°. There are a spread of Ti–O bond distances ranging from 1.98–2.02 Å. In the third Ti4+ site, Ti4+ is bonded to six O2- atoms to form TiO6 octahedra that share a cornercorner with one CrO6 octahedra and corners with five TiO6 octahedra. The corner-sharing octahedra tilt angles range from 20–22°. There are a spread of Ti–O bond distances ranging from 1.98–2.03 Å. In the fourth Ti4+ site, Ti4+ is bonded to six O2- atoms to form TiO6 octahedra that share corners with three TiO6 octahedra and corners with three CrO6 octahedra. The corner-sharing octahedra tilt angles range from 20–23°. There are a spread of Ti–O bond distances ranging from 1.98–2.04 Å. In the fifth Ti4+ site, Ti4+ is bonded to six O2- atoms to form TiO6 octahedra that share corners with three TiO6 octahedra and corners with three CrO6 octahedra. The corner-sharing octahedra tilt angles range from 19–23°. There are a spread of Ti–O bond distances ranging from 1.98–2.02 Å. There are five inequivalent Cr+2.20+ sites. In the first Cr+2.20+ site, Cr+2.20+ is bonded to six O2- atoms to form CrO6 octahedra that share corners with two TiO6 octahedra and corners with four CrO6 octahedra. The corner-sharing octahedra tilt angles range from 21–24°. There are a spread of Cr–O bond distances ranging from 2.02–2.05 Å. In the second Cr+2.20+ site, Cr+2.20+ is bonded to six O2- atoms to form CrO6 octahedra that share corners with two equivalent TiO6 octahedra and corners with four CrO6 octahedra. The corner-sharing octahedra tilt angles range from 23–24°. There are a spread of Cr–O bond distances ranging from 2.01–2.03 Å. In the third Cr+2.20+ site, Cr+2.20+ is bonded to six O2- atoms to form CrO6 octahedra that share corners with two TiO6 octahedra and corners with four CrO6 octahedra. The corner-sharing octahedra tilt angles range from 21–24°. There are a spread of Cr–O bond distances ranging from 2.02–2.04 Å. In the fourth Cr+2.20+ site, Cr+2.20+ is bonded to six O2- atoms to form CrO6 octahedra that share a cornercorner with one CrO6 octahedra and corners with five TiO6 octahedra. The corner-sharing octahedra tilt angles range from 21–24°. There are a spread of Cr–O bond distances ranging from 2.01–2.03 Å. In the fifth Cr+2.20+ site, Cr+2.20+ is bonded to six O2- atoms to form CrO6 octahedra that share corners with three TiO6 octahedra and corners with three CrO6 octahedra. The corner-sharing octahedra tilt angles range from 21–24°. There are three shorter (2.01 Å) and three longer (2.03 Å) Cr–O bond lengths. There are thirty inequivalent O2- sites. In the first O2- site, O2- is bonded in a 5-coordinate geometry to one Ca2+, two La3+, and two Ti4+ atoms. In the second O2- site, O2- is bonded in a 5-coordinate geometry to one Ca2+, two La3+, and two Ti4+ atoms. In the third O2- site, O2- is bonded in a 5-coordinate geometry to one Ca2+, two La3+, and two Ti4+ atoms. In the fourth O2- site, O2- is bonded in a 5-coordinate geometry to three La3+, one Ti4+, and one Cr+2.20+ atom. In the fifth O2- site, O2- is bonded in a 5-coordinate geometry to two equivalent Ca2+, one La3+, and two Ti4+ atoms. In the sixth O2- site, O2- is bonded in a 5-coordinate geometry to three La3+ and two Cr+2.20+ atoms. In the seventh O2- site, O2- is bonded in a 5-coordinate geometry to three La3+ and two Ti4+ atoms. In the eighth O2- site, O2- is bonded in a 5-coordinate geometry to three La3+ and two Cr+2.20+ atoms. In the ninth O2- site, O2- is bonded in a 5-coordinate geometry to three La3+, one Ti4+, and one Cr+2.20+ atom. In the tenth O2- site, O2- is bonded in a 5-coordinate geometry to three La3+, one Ti4+, and one Cr+2.20+ atom. In the eleventh O2- site, O2- is bonded in a 5-coordinate geometry to three La3+, one Ti4+, and one Cr+2.20+ atom. In the twelfth O2- site, O2- is bonded in a 5-coordinate geometry to three La3+ and two Cr+2.20+ atoms. In the thirteenth O2- site, O2- is bonded in a 5-coordinate geometry to one Ca2+, two La3+, one Ti4+, and one Cr+2.20+ atom. In the fourteenth O2- site, O2- is bonded in a 5-coordinate geometry to three La3+ and two Cr+2.20+ atoms. In the fifteenth O2- site, O2- is bonded in a 5-coordinate geometry to one Ca2+, two equivalent La3+, one Ti4+, and one Cr+2.20+ atom. In the sixteenth O2- site, O2- is bonded in a 5-coordinate geometry to three La3+ and two Cr+2.20+ atoms. In the seventeenth O2- site, O2- is bonded in a 5-coordinate geometry to three La3+ and two Cr+2.20+ atoms. In the eighteenth O2- site, O2- is bonded in a 5-coordinate geometry to three La3+, one Ti4+, and one Cr+2.20+ atom. In the nineteenth O2- site, O2- is bonded in a 5-coordinate geometry to three La3+, one Ti4+, and one Cr+2.20+ atom. In the twentieth O2- site, O2- is bonded in a 5-coordinate geometry to three La3+, one Ti4+, and one Cr+2.20+ atom. In the twenty-first O2- site, O2- is bonded in a 5-coordinate geometry to three La3+ and two Cr+2.20+ atoms. In the twenty-second O2- site, O2- is bonded in a 5-coordinate geometry to three La3+, one Ti4+, and one Cr+2.20+ atom. In the twenty-third O2- site, O2- is bonded in a 5-coordinate geometry to three La3+ and two Cr+2.20+ atoms. In the twenty-fourth O2- site, O2- is bonded in a 5-coordinate geometry to three La3+, one Ti4+, and one Cr+2.20+ atom. In the twenty-fifth O2- site, O2- is bonded in a 5-coordinate geometry to three La3+, one Ti4+, and one Cr+2.20+ atom. In the twenty-sixth O2- site, O2- is bonded in a 5-coordinate geometry to three La3+ and two Ti4+ atoms. In the twenty-seventh O2- site, O2- is bonded in a 5-coordinate geometry to three La3+, one Ti4+, and one Cr+2.20+ atom. In the twenty-eighth O2- site, O2- is bonded in a 5-coordinate geometry to one Ca2+, two La3+, and two Ti4+ atoms. In the twenty-ninth O2- site, O2- is bonded in a 5-coordinate geometry to three La3+, one Ti4+, and one Cr+2.20+ atom. In the thirtieth O2- site, O2- is bonded in a 5-coordinate geometry to one Ca2+, two La3+, and two Ti4+ atoms.

Research Organization:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). LBNL Materials Project
Sponsoring Organization:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
Contributing Organization:
MIT; UC Berkeley; Duke; U Louvain
DOE Contract Number:
AC02-05CH11231; EDCBEE
OSTI ID:
1284726
Report Number(s):
mp-694926
Resource Relation:
Related Information: https://materialsproject.org/citing
Country of Publication:
United States
Language:
English

Similar Records

Materials Data on Ca3La7Ti5Cr5O30 by Materials Project
Dataset · Sun Jan 19 00:00:00 EST 2014 · OSTI ID:1284726

Materials Data on Ca7La3Ti5Cr5O30 by Materials Project
Dataset · Sun Jan 19 00:00:00 EST 2014 · OSTI ID:1284726

Materials Data on Ca2La8Ti5Cr5O30 by Materials Project
Dataset · Fri Jun 05 00:00:00 EDT 2020 · OSTI ID:1284726