skip to main content

Title: ADVANTG 3.0.1: AutomateD VAriaNce reducTion Generator

Version 00 ADVANTG is an automated tool for generating variance reduction parameters for fixed-source continuous-energy Monte Carlo simulations with MCNP5 V1.60 (CCC-810, not included in this distribution) based on approximate 3-D multigroup discrete ordinates adjoint transport solutions generated by Denovo (included in this distribution). The variance reduction parameters generated by ADVANTG consist of space and energy-dependent weight-window bounds and biased source distributions, which are output in formats that can be directly used with unmodified versions of MCNP5. ADVANTG has been applied to neutron, photon, and coupled neutron-photon simulations of real-world radiation detection and shielding scenarios. ADVANTG is compatible with all MCNP5 geometry features and can be used to accelerate cell tallies (F4, F6, F8), surface tallies (F1 and F2), point-detector tallies (F5), and Cartesian mesh tallies (FMESH).
Publication Date:
OSTI Identifier:
Report Number(s):
ADVANTG 3.0.1; 004531MLTPL00
DOE Contract Number:
Resource Type:
Software Revision:
Software Package Number:
Software CPU:
Source Code Available:
Other Software Info:
Owner Installation: OAK RIDGE NATIONAL LAB Contributors: Oak Ridge National Laboratory, Oak Ridge, Tennessee. ADVANTG implements the Consistent Adjoint Driven Importance Sampling (CADIS) method and the Forward-Weighted CADIS (FW-CADIS) method for generating variance reduction parameters. The CADIS and FW-CADIS methods provide a prescription for generating space- and energy-dependent weight-window targets and a consistent biased source distribution. The CADIS method was developed for accelerating individual tallies, whereas FW-CADIS can be applied to multiple tallies and mesh tallies. The CADIS method has been demonstrated to provide speed-ups in the tally FOM of O(101-104) across a broad range of radiation detection and shielding problems. The FW-CADIS method has been shown to produce relatively uniform statistical uncertainties across multiple cell tallies and large space- and energy-dependent mesh tallies in real-world applications. Denovo implements a structured, Cartesian-grid discrete ordinates solver based on the Koch-Baker-Alcouffe algorithm for parallel sweeps across x-y domain blocks. Multiple discretization schemes are available: step characteristics, linear-discontinuous, tri-linear discontinuous and diamond difference (optionally theta-weighted or with negative-flux fixup). Multiple quadrature sets are available: QR product, QR triangular, Gauss-Legendre product, linear-discontinuous finite element, level-symmetric, as well as user-defined quadratures. Denovo contains two embedded first-collision source treatments: an analytic kernel for point sources and a Monte Carlo treatment for distributed sources. The Trilinos parallel solvers package is used to apply GMRES to accelerate the within-group iterations, resulting in a computationally efficient and robust transport solver. The references provide a detailed description of the CADIS and FW-CADIS methods, as well as the methods and algorithms implemented in the Denovo discrete ordinates package. KEYWORDS: VARIANCE REDUCTION; DISCRETE ORDINATES; HYBRID TRANSPORT; CADIS; FW-CADIS; MONTE CARLO; MCNP
Research Org:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org:
Contributing Orgs:
Not Specified
Country of Publication:
United States

To initiate an order for this software, request consultation services, or receive further information, fill out the request form below. You may also reach us by email at: .

OSTI staff will begin to process an order for scientific and technical software once the payment and signed site license agreement are received. If the forms are not in order, OSTI will contact you. No further action will be taken until all required information and/or payment is received. Orders are usually processed within three to five business days.

Software Request