skip to main content

This content will become publicly available on June 7, 2017

Title: Synthesis of α-MoC1-x Nanoparticles with a Surface-Modified SBA-15 Hard Template: Determination of Structure-Function Relationships in Acetic Acid Deoxygenation

Surface modification of mesoporous SBA-15 silica generated a hydrophobic environment for a molybdenum diamine (Mo-diamine) precursor solution, enabling direct growth of isolated 1.9 ± 0.4 nm α-MoC1-x nanoparticles (NPs) inside the pores of the support. The resulting NP catalysts are bifunctional, and compared to bulk α-MoC1-x and β-Mo2C, the NPs exhibit a greater acid-site:H-site ratio and a fraction of stronger acid sites. The greater acid-site:H-site ratio results in higher decarbonylation (DCO) selectivity during acetic acid hydrodeoxygenation (HDO) reactions, and the stronger acid sites lead to higher activity and ketonization (KET) selectivity at high temperatures. Lastly, the hard-templating synthetic method could be a versatile route toward carbide NPs of varying size, composition, and phase, on a range of mesoporous oxide supports.
 [1] ;  [1] ;  [1] ;  [1]
  1. National Renewable Energy Lab. (NREL), Golden, CO (United States). National Bioenergy Center
Publication Date:
OSTI Identifier:
Report Number(s):
Journal ID: ISSN 1433-7851
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Angewandte Chemie (International Edition)
Additional Journal Information:
Journal Name: Angewandte Chemie (International Edition); Journal Volume: 55; Journal Issue: 31; Journal ID: ISSN 1433-7851
Research Org:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Bioenergy Technologies Office (EE-3B)
Country of Publication:
United States
09 BIOMASS FUELS; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; bifunctional catalysts; biomass conversion; hydrodeoxygenation; metal carbides; surface chemistry