skip to main content

This content will become publicly available on July 27, 2016

Title: Theory of electromagnetic insertion devices and the corresponding synchrotron radiation

Permanent magnet insertion devices (IDs), which are the main radiation generating devices in synchrotron light sources and free-electron lasers, use a time-invariant but space-periodic magnetic field to wiggle relativistic electrons for short-wavelength radiation generation. Recently, a high power microwave based undulator has also been successfully demonstrated at SLAC which promises the advantage of dynamic tunability of radiation spectrum and polarization. Such IDs employ transverse elecromagnetic fields which are periodic in both space and time to undulate the electrons. In this paper we develop a detailed theory of the principle of electromagnetic IDs from first principles for both linear and circular polarization modes. The electromagnetic equivalent definitions of undulator period (λu) and undulator deflection parameter (K) are derived. In the inertial frame where the average momentum of the electron is zero, we obtain the figure-8-like trajectory for the linear polarization mode and the circular trajectory for the circular polarization mode. As a result, the corresponding radiation spectra and the intensity of harmonics is also calculated.
Authors:
 [1] ;  [1]
  1. SLAC National Accelerator Lab., Menlo Park, CA (United States)
Publication Date:
OSTI Identifier:
1273683
Grant/Contract Number:
AC02-76SF00515
Type:
Published Article
Journal Name:
Physical Review Accelerators and Beams (Online)
Additional Journal Information:
Journal Name: Physical Review Accelerators and Beams (Online); Journal Volume: 19; Journal Issue: 7; Journal ID: ISSN 2469-9888
Publisher:
American Physical Society (APS)
Research Org:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org:
USDOE
Country of Publication:
United States
Language:
English
Subject:
46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY