skip to main content

Title: Long Carrier Lifetimes in Large-Grain Polycrystalline CdTe Without CdCl2

For decades, polycrystalline CdTe thin films for solar applications have been restricted to grain sizes of microns or less whereas other semiconductors such as silicon and perovskites have produced devices with grains ranging from less than a micron to more than 1 mm. Because the lifetimes in as-deposited polycrystalline CdTe films are typically limited to less than a few hundred picoseconds, a CdCl2 treatment is generally used to improve the lifetime; but this treatment may limit the achievable hole density by compensation. Here, we establish methods to produce CdTe films with grain sizes ranging from hundreds of nanometers to several hundred microns by close-spaced sublimation at industrial manufacturing growth rates. Two-photon excitation photoluminescence spectroscopy shows a positive correlation of lifetime with grain size. Large-grain, as-deposited CdTe exhibits lifetimes exceeding 10 ns without Cl, S, O, or Cu. This uncompensated material allows dopants such as P to achieve a hole density of 1016 cm-3, which is an order of magnitude higher than standard CdCl2-treated devices, without compromising the lifetime.
Authors:
; ; ; ; ; ; ; ; ;
Publication Date:
OSTI Identifier:
1266707
Report Number(s):
NREL/JA-5900-66346
Journal ID: ISSN 0003-6951
DOE Contract Number:
AC36-08GO28308
Resource Type:
Journal Article
Resource Relation:
Journal Name: Applied Physics Letters; Journal Volume: 108; Journal Issue: 26
Publisher:
American Institute of Physics (AIP)
Research Org:
NREL (National Renewable Energy Laboratory (NREL), Golden, CO (United States))
Sponsoring Org:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Solar Energy Technologies Office (EE-4S)
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY; 36 MATERIALS SCIENCE polycrystalline CdTe; TRPL