skip to main content

Title: Phase-Space Detection of Cyber Events

Energy Delivery Systems (EDS) are a network of processes that produce, transfer and distribute energy. EDS are increasingly dependent on networked computing assets, as are many Industrial Control Systems. Consequently, cyber-attacks pose a real and pertinent threat, as evidenced by Stuxnet, Shamoon and Dragonfly. Hence, there is a critical need for novel methods to detect, prevent, and mitigate effects of such attacks. To detect cyber-attacks in EDS, we developed a framework for gathering and analyzing timing data that involves establishing a baseline execution profile and then capturing the effect of perturbations in the state from injecting various malware. The data analysis was based on nonlinear dynamics and graph theory to improve detection of anomalous events in cyber applications. The goal was the extraction of changing dynamics or anomalous activity in the underlying computer system. Takens' theorem in nonlinear dynamics allows reconstruction of topologically invariant, time-delay-embedding states from the computer data in a sufficiently high-dimensional space. The resultant dynamical states were nodes, and the state-to-state transitions were links in a mathematical graph. Alternatively, sequential tabulation of executing instructions provides the nodes with corresponding instruction-to-instruction links. Graph theorems guarantee graph-invariant measures to quantify the dynamical changes in the running applications. Results showedmore » a successful detection of cyber events.« less
 [1] ;  [1] ;  [1] ;  [1]
  1. ORNL
Publication Date:
OSTI Identifier:
DOE Contract Number:
Resource Type:
Resource Relation:
Conference: Cyber and Information Security Research Conference, Oak Ridge, TN, USA, 20150407, 20150407
Research Org:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org:
Work for Others (WFO)
Country of Publication:
United States
Energy Delivery Systems; cyber anomaly detection; phase-space analysis; graph theory; malware; rootkits; cyber-attacks