skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Significantly Improving Regional Seismic Amplitude Tomography at Higher Frequencies by Determining S -Wave Bandwidth

Abstract

Characterizing regional seismic signals continues to be a difficult problem due to their variability. Calibration of these signals is very important to many aspects of monitoring underground nuclear explosions, including detecting seismic signals, discriminating explosions from earthquakes, and reliably estimating magnitude and yield. Amplitude tomography, which simultaneously inverts for source, propagation, and site effects, is a leading method of calibrating these signals. A major issue in amplitude tomography is the data quality of the input amplitude measurements. Pre-event and prephase signal-to-noise ratio (SNR) tests are typically used but can frequently include bad signals and exclude good signals. The deficiencies of SNR criteria, which are demonstrated here, lead to large calibration errors. To ameliorate these issues, we introduce a semi-automated approach to assess the bandwidth of a spectrum where it behaves physically. We determine the maximum frequency (denoted as Fmax) where it deviates from this behavior due to inflections at which noise or spurious signals start to bias the spectra away from the expected decay. We compare two amplitude tomography runs using the SNR and new Fmax criteria and show significant improvements to the stability and accuracy of the tomography output for frequency bands higher than 2 Hz by using ourmore » assessments of valid S-wave bandwidth. We compare Q estimates, P/S residuals, and some detailed results to explain the improvements. Lastly, for frequency bands higher than 4 Hz, needed for effective P/S discrimination of explosions from earthquakes, the new bandwidth criteria sufficiently fix the instabilities and errors so that the residuals and calibration terms are useful for application.« less

Authors:
 [1];  [2]
  1. Alliant Techsystems, Newington, VA (United States)
  2. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1262164
Report Number(s):
LLNL-JRNL-676436
Journal ID: ISSN 0037-1106
Grant/Contract Number:  
AC52-07NA27344
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Bulletin of the Seismological Society of America
Additional Journal Information:
Journal Volume: 106; Journal Issue: 3; Journal ID: ISSN 0037-1106
Publisher:
Seismological Society of America
Country of Publication:
United States
Language:
English
Subject:
58 GEOSCIENCES; 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS

Citation Formats

Fisk, Mark D., and Pasyanos, Michael E. Significantly Improving Regional Seismic Amplitude Tomography at Higher Frequencies by Determining S -Wave Bandwidth. United States: N. p., 2016. Web. doi:10.1785/0120150247.
Fisk, Mark D., & Pasyanos, Michael E. Significantly Improving Regional Seismic Amplitude Tomography at Higher Frequencies by Determining S -Wave Bandwidth. United States. https://doi.org/10.1785/0120150247
Fisk, Mark D., and Pasyanos, Michael E. 2016. "Significantly Improving Regional Seismic Amplitude Tomography at Higher Frequencies by Determining S -Wave Bandwidth". United States. https://doi.org/10.1785/0120150247. https://www.osti.gov/servlets/purl/1262164.
@article{osti_1262164,
title = {Significantly Improving Regional Seismic Amplitude Tomography at Higher Frequencies by Determining S -Wave Bandwidth},
author = {Fisk, Mark D. and Pasyanos, Michael E.},
abstractNote = {Characterizing regional seismic signals continues to be a difficult problem due to their variability. Calibration of these signals is very important to many aspects of monitoring underground nuclear explosions, including detecting seismic signals, discriminating explosions from earthquakes, and reliably estimating magnitude and yield. Amplitude tomography, which simultaneously inverts for source, propagation, and site effects, is a leading method of calibrating these signals. A major issue in amplitude tomography is the data quality of the input amplitude measurements. Pre-event and prephase signal-to-noise ratio (SNR) tests are typically used but can frequently include bad signals and exclude good signals. The deficiencies of SNR criteria, which are demonstrated here, lead to large calibration errors. To ameliorate these issues, we introduce a semi-automated approach to assess the bandwidth of a spectrum where it behaves physically. We determine the maximum frequency (denoted as Fmax) where it deviates from this behavior due to inflections at which noise or spurious signals start to bias the spectra away from the expected decay. We compare two amplitude tomography runs using the SNR and new Fmax criteria and show significant improvements to the stability and accuracy of the tomography output for frequency bands higher than 2 Hz by using our assessments of valid S-wave bandwidth. We compare Q estimates, P/S residuals, and some detailed results to explain the improvements. Lastly, for frequency bands higher than 4 Hz, needed for effective P/S discrimination of explosions from earthquakes, the new bandwidth criteria sufficiently fix the instabilities and errors so that the residuals and calibration terms are useful for application.},
doi = {10.1785/0120150247},
url = {https://www.osti.gov/biblio/1262164}, journal = {Bulletin of the Seismological Society of America},
issn = {0037-1106},
number = 3,
volume = 106,
place = {United States},
year = {Tue May 03 00:00:00 EDT 2016},
month = {Tue May 03 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 2 works
Citation information provided by
Web of Science

Save / Share: