skip to main content

Title: Close-out report with links to abstracts

This grant provided A/V support for two technical meetings of the Edge Coordinating Committee: (1) Nov 13, 2013 (co-located with the APS-DPP meeting in Denver, CO) https://ecc.mit.edu/fall-2013-technical-meeting#overlay-context=ecc-meetings; (2) April 28-May 1, 2015 (embedded sessions in the Transport Task Force Meeting, Salem, MA) http://www-internal.psfc.mit.edu/TTF2015/index.html. The ultimate goal of the U.S. Transport Task Force is to develop a physics-based understanding of particle, momentum and heat transport in magnetic fusion devices. This understanding should be of sufficient depth that it allows the development of predictive models of plasma transport that can be validated against experiment, and then used to anticipate the future performance of burning plasmas in ITER, as well as to provide guidance for the design of next-step fusion nuclear science facilities. To achieve success in transport science, it is essential to characterize local fluctuations and transport in toroidal plasmas, to understand the basic mechanisms responsible for transport, and ultimately to control these transport processes. These goals must be pursued in multiple areas, and these topics evolve in order to reflect current interests.
Authors:
 [1]
  1. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
Publication Date:
OSTI Identifier:
1261571
DOE Contract Number:
SC0010493
Resource Type:
Technical Report
Research Org:
Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
Sponsoring Org:
USDOE Office of Science (SC), Fusion Energy Sciences (FES) (SC-24)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; MEETINGS; TRANSPORT THEORY; PLASMA; THERMONUCLEAR REACTORS; MAGNETIC CONFINEMENT; TOROIDAL CONFIGURATION; FLUCTUATIONS fusion; plasma-material interactions; divertor physics; transport