skip to main content

SciTech ConnectSciTech Connect

Title: Argonne Bubble Experiment Thermal Model Development II

This report describes the continuation of the work reported in “Argonne Bubble Experiment Thermal Model Development”. The experiment was performed at Argonne National Laboratory (ANL) in 2014. A rastered 35 MeV electron beam deposited power in a solution of uranyl sulfate, generating heat and radiolytic gas bubbles. Irradiations were performed at three beam power levels, 6, 12 and 15 kW. Solution temperatures were measured by thermocouples, and gas bubble behavior was observed. This report will describe the Computational Fluid Dynamics (CFD) model that was developed to calculate the temperatures and gas volume fractions in the solution vessel during the irradiations. The previous report described an initial analysis performed on a geometry that had not been updated to reflect the as-built solution vessel. Here, the as-built geometry is used. Monte-Carlo N-Particle (MCNP) calculations were performed on the updated geometry, and these results were used to define the power deposition profile for the CFD analyses, which were performed using Fluent, Ver. 16.2. CFD analyses were performed for the 12 and 15 kW irradiations, and further improvements to the model were incorporated, including the consideration of power deposition in nearby vessel components, gas mixture composition, and bubble size distribution. The temperature results ofmore » the CFD calculations are compared to experimental measurements.« less
Authors:
 [1]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
OSTI Identifier:
1260366
Report Number(s):
LA-UR--16-24607
TRN: US1601542
DOE Contract Number:
AC52-06NA25396
Resource Type:
Technical Report
Research Org:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org:
USDOE National Nuclear Security Administration (NNSA)
Country of Publication:
United States
Language:
English
Subject:
38 RADIATION CHEMISTRY, RADIOCHEMISTRY, AND NUCLEAR CHEMISTRY; SOLUTIONS; ANL; BUBBLES; ELECTRON BEAMS; URANYL SULFATES; MONTE CARLO METHOD; RADIOLYSIS; COMPARATIVE EVALUATIONS; COMPUTERIZED SIMULATION; FLUID MECHANICS; MEV RANGE 10-100; POWER RANGE 10-100 KW; POWER RANGE 01-10 KW; THERMOCOUPLES; ENERGY ABSORPTION Computational Fluid Dynamics; heat transfer; bubbly flow