skip to main content

SciTech ConnectSciTech Connect

Title: Prediction of an arc-tunable Weyl Fermion metallic state in MoxW1-xTe2

A Weyl semimetal is a new state of matter that hosts Weyl fermions as emergent quasiparticles. The Weyl fermions correspond to isolated points of bulk band degeneracy, Weyl nodes, which are connected only through the crystal’s boundary by exotic Fermi arcs. The length of the Fermi arc gives a measure of the topological strength, because the only way to destroy the Weyl nodes is to annihilate them in pairs in the reciprocal space. To date, Weyl semimetals are only realized in the TaAs class. Here, we propose a tunable Weyl state in MoxW1₋xTe2 where Weyl nodes are formed by touching points between metallic pockets. We show that the Fermi arc length can be changed as a function of Mo concentration, thus tuning the topological strength. Lastly,our results provide an experimentally feasible route to realizing Weyl physics in the layered compound MoxW1₋xTe2, where non-saturating magneto-resistance and pressure-driven superconductivity have been observed.
 [1] ;  [2] ;  [3] ;  [3] ;  [3] ;  [4] ;  [2] ;  [2] ;  [2] ;  [2] ;  [2] ;  [5] ;  [6] ;  [7] ;  [3] ;  [8]
  1. National Tsing Hua Univ., Hsinchu (Taiwan)
  2. Princeton Univ., NJ (United States). Dept.of Physics
  3. National Univ. of Singapore (Singapore)
  4. National Univ. of Singapore (Singapore); Northeastern Univ., Boston, MA (United States)
  5. Princeton Univ., NJ (United States). Dept.of Physics; Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  6. Northeastern Univ., Boston, MA (United States)
  7. National Tsing Hua Univ., Hsinchu (Taiwan); Academia Sinica, Taipei (Taiwan)
  8. Princeton Univ., NJ (United States). Dept.of Physics; Princeton Univ., NJ (United States). Princeton Institute for the Science and Technology of Materials
Publication Date:
OSTI Identifier:
Grant/Contract Number:
FG-02- 05ER46200; NRF-NRFF2013-03; FG02-07ER46352; AC02-05CH11231; GBMF4547
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 7; Journal ID: ISSN 2041-1723
Nature Publishing Group
Research Org:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22); National Research Foundation (NRF) Singapore
Country of Publication:
United States