skip to main content

Title: Experimental particle physics research at Texas Tech University

The high energy physics group at Texas Tech University (TTU) concentrates its research efforts on the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) and on generic detector R&D for future applications. Our research programs have been continuously supported by the US Department of Energy for over two decades, and this final report summarizes our achievements during the last grant period from May 1, 2012 to March 31, 2016. After having completed the Run 1 data analyses from the CMS detector, including the discovery of the Higgs boson in July 2012, we concentrated on commissioning the CMS hadron calorimeter (HCAL) for Run 2, performing analyses of Run 2 data, and making initial studies and plans for the second phase of upgrades in CMS. Our research has primarily focused on searches for Beyond Standard Model (BSM) physics via dijets, monophotons, and monojets. We also made significant contributions to the analyses of the semileptonic Higgs decays and Standard Model (SM) measurements in Run 1. Our work on the operations of the CMS detector, especially the performance monitoring of the HCAL in Run 1, was indispensable to the experiment. Our team members, holding leadership positions in HCAL, have played keymore » roles in the R&D, construction, and commissioning of these detectors in the last decade. We also maintained an active program in jet studies that builds on our expertise in calorimetry and algorithm development. In Run 2, we extended some of our analyses at 8 TeV to 13 TeV, and we also started to investigate new territory, e.g., dark matter searches with unexplored signatures. The objective of dual-readout calorimetry R&D was intended to explore (and, if possible, eliminate) the obstacles that prevent calorimetric detection of hadrons and jets with a comparable level of precision as we have grown accustomed to for electrons and photons. The initial prototype detector was successfully tested at the SPS/CERN in 2003-2004 and evolved over the last decade. In 2012-2015, several other prototypes were built to further reduce leakage fluctuations, improve Cherenkov light yield, increase fiber attenuation length, and other related phenomena. During this grant period, we graduated two students with Ph.D. degrees, and five undergraduate students from our labs went on to prestigious graduate programs in the US and Europe. Also, the TTU HEP team has participated in the QuarkNet program every year since 2001. We are dedicated to working with area teachers and students at all levels and to training the next generation of scientists. Over 20 high school teachers have participated in our program since its inception.« less
Authors:
 [1] ;  [1] ;  [1] ;  [1]
  1. Texas Tech Univ., Lubbock, TX (United States)
Publication Date:
OSTI Identifier:
1258345
Report Number(s):
DOE-TTU--0007923
TRN: US1601504
DOE Contract Number:
SC0007923
Resource Type:
Technical Report
Research Org:
Texas Tech Univ., Lubbock, TX (United States)
Sponsoring Org:
USDOE Office of Science (SC), High Energy Physics (HEP) (SC-25)
Country of Publication:
United States
Language:
English
Subject:
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; 46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY; CMS DETECTOR; CERN LHC; TEXAS; HIGGS BOSONS; TEV RANGE 10-100; DATA ANALYSIS; HIGGS MODEL; HIGH ENERGY PHYSICS; COMPARATIVE EVALUATIONS; NONLUMINOUS MATTER; ALGORITHMS; SHOWER COUNTERS; COMMISSIONING; JETS; RESEARCH PROGRAMS; CONSTRUCTION; SEMILEPTONIC DECAY; STANDARD MODEL; MONITORING; PERFORMANCE