skip to main content

Title: Joint Real-Time Energy and Demand-Response Management using a Hybrid Coalitional-Noncooperative Game

In order to model the interactions among utility companies, building demands and renewable energy generators (REGs), a hybrid coalitional-noncooperative game framework has been proposed. We formulate a dynamic non-cooperative game to study the energy dispatch within multiple utility companies, while we take a coalitional perspective on REGs and buildings demands through a hedonic coalition formation game approach. In this case, building demands request different power supply from REGs, then the building demands can be organized into an ultimate coalition structure through a distributed hedonic shift algorithm. At the same time, utility companies can also obtain a stable power generation profile. In addition, the interactive progress among the utility companies and building demands which cannot be supplied by REGs is implemented by distributed game theoretic algorithms. Numerical results illustrate that the proposed hybrid coalitional-noncooperative game scheme reduces the cost of both building demands and utility companies compared with the initial scene.
; ; ; ; ;
Publication Date:
OSTI Identifier:
Report Number(s):
DOE Contract Number:
Resource Type:
Resource Relation:
Conference: Presented at the 2015 49th Asilomar Conference on Signals, Systems and Computers, 8-11 November 2015, Pacific Grove, California; Related Information: Proceedings of the 2015 49th Asilomar Conference on Signals, Systems and Computers, 8-11 November 2015, Pacific Grove, California
Piscataway, NJ: Institute of Electrical and Electronics Engineers (IEEE)
Research Org:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
Country of Publication:
United States
24 POWER TRANSMISSION AND DISTRIBUTION; demand side management; energy management systems; game theory; load dispatching; coalitional-noncooperative game scheme