skip to main content

Title: Powder Metallurgy Fabrication of Molybdenum Accelerator Target Disks

Powder metallurgy approaches for the fabrication of accelerator target disks are being examined to support the development of Mo-99 production by NorthStar Medical Technologies, LLC. An advantage of powder metallurgy is that very little material is wasted and, at present, dense, quality parts are routinely produced from molybdenum powder. The proposed targets, however, are thin wafers, 29 mm in diameter with a thickness of 0.5 mm, with very stringent dimensional tolerances. Although tooling can be machined to very high tolerance levels, the operations of powder feed, pressing and sintering involve complicated mechanisms, each of which affects green density and shrinkage, and therefore the dimensions and shape of the final product. Combinations of powder morphology, lubricants and pressing technique have been explored to produce target disks with minimal variations in thickness and little or no distortion. In addition, sintering conditions that produce densities for optimum target dissolvability are being determined.
Authors:
 [1] ;  [1] ;  [1] ;  [1]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
OSTI Identifier:
1256794
Report Number(s):
ORNL/TM-2014/238
NN9100000; MDGA518; TRN: US1700217
DOE Contract Number:
AC05-00OR22725
Resource Type:
Technical Report
Research Org:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Org:
USDOE National Nuclear Security Administration (NNSA)
Country of Publication:
United States
Language:
English
Subject:
43 PARTICLE ACCELERATORS; TARGETS; PRESSING; SINTERING; MOLYBDENUM; POWDER METALLURGY; MOLYBDENUM 99; DENSITY; THICKNESS; LUBRICANTS; MORPHOLOGY; SHAPE; SHRINKAGE; VARIATIONS; ISOTOPE PRODUCTION