skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Desorption Kinetics of Ar, Kr, Xe, N2, O2, CO, Methane, Ethane, and Propane from Graphene and Amorphous Solid Water Surfaces

Abstract

The desorption kinetics for Ar, Kr, Xe, N2, O2, CO, methane, ethane, and propane from grapheme covered Pt(111) and amorphous solid water (ASW) surfaces are investigated using temperature programmed desorption (TPD). The TPD spectra for all of the adsorbates from graphene have well-resolved first, second, third, and multi- layer desorption peaks. The alignment of the leading edges is consistent the zero-order desorption for all of the adsorbates. An Arrhenius analysis is used to obtain desorption energies and prefactors for desorption from graphene for all of the adsorbates. In contrast, the leading desorption edges for the adsorbates from ASW do not align (for coverages < 2 ML). The non-alignment of TPD leading edges suggests that there are multiple desorption binding sites on the ASW surface. Inversion analysis is used to obtain the coverage dependent desorption energies and prefactors for desorption from ASW for all of the adsorbates.

Authors:
; ;
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL)
Sponsoring Org.:
USDOE
OSTI Identifier:
1254589
Report Number(s):
PNNL-SA-114204
Journal ID: ISSN 1520-6106; 48154; KC0301050
DOE Contract Number:  
AC05-76RL01830
Resource Type:
Journal Article
Journal Name:
Journal of Physical Chemistry. B, Condensed Matter, Materials, Surfaces, Interfaces and Biophysical Chemistry
Additional Journal Information:
Journal Volume: 120; Journal Issue: 8; Journal ID: ISSN 1520-6106
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
Environmental Molecular Sciences Laboratory

Citation Formats

Smith, R. Scott, May, Robert A., and Kay, Bruce D. Desorption Kinetics of Ar, Kr, Xe, N2, O2, CO, Methane, Ethane, and Propane from Graphene and Amorphous Solid Water Surfaces. United States: N. p., 2016. Web. doi:10.1021/acs.jpcb.5b10033.
Smith, R. Scott, May, Robert A., & Kay, Bruce D. Desorption Kinetics of Ar, Kr, Xe, N2, O2, CO, Methane, Ethane, and Propane from Graphene and Amorphous Solid Water Surfaces. United States. https://doi.org/10.1021/acs.jpcb.5b10033
Smith, R. Scott, May, Robert A., and Kay, Bruce D. 2016. "Desorption Kinetics of Ar, Kr, Xe, N2, O2, CO, Methane, Ethane, and Propane from Graphene and Amorphous Solid Water Surfaces". United States. https://doi.org/10.1021/acs.jpcb.5b10033.
@article{osti_1254589,
title = {Desorption Kinetics of Ar, Kr, Xe, N2, O2, CO, Methane, Ethane, and Propane from Graphene and Amorphous Solid Water Surfaces},
author = {Smith, R. Scott and May, Robert A. and Kay, Bruce D.},
abstractNote = {The desorption kinetics for Ar, Kr, Xe, N2, O2, CO, methane, ethane, and propane from grapheme covered Pt(111) and amorphous solid water (ASW) surfaces are investigated using temperature programmed desorption (TPD). The TPD spectra for all of the adsorbates from graphene have well-resolved first, second, third, and multi- layer desorption peaks. The alignment of the leading edges is consistent the zero-order desorption for all of the adsorbates. An Arrhenius analysis is used to obtain desorption energies and prefactors for desorption from graphene for all of the adsorbates. In contrast, the leading desorption edges for the adsorbates from ASW do not align (for coverages < 2 ML). The non-alignment of TPD leading edges suggests that there are multiple desorption binding sites on the ASW surface. Inversion analysis is used to obtain the coverage dependent desorption energies and prefactors for desorption from ASW for all of the adsorbates.},
doi = {10.1021/acs.jpcb.5b10033},
url = {https://www.osti.gov/biblio/1254589}, journal = {Journal of Physical Chemistry. B, Condensed Matter, Materials, Surfaces, Interfaces and Biophysical Chemistry},
issn = {1520-6106},
number = 8,
volume = 120,
place = {United States},
year = {Thu Mar 03 00:00:00 EST 2016},
month = {Thu Mar 03 00:00:00 EST 2016}
}